Numéro
Matériaux & Techniques
Volume 112, Numéro 5, 2024
Special Issue on ‘Circular Economy initiatives and solutions in the steel sector’, edited by Valentina Colla and Ismael Matino
Numéro d'article 503
Nombre de pages 23
Section Circular economy, recycling, reuse, sobriety
DOI https://doi.org/10.1051/mattech/2024026
Publié en ligne 21 novembre 2024
  1. G.-M. Kim, K.Y. Lisandy, Y.Y. Isworo, J.-H. Kim, C.-H. Jeon, Investigation into the effects of ash-free coal binder and torrefied biomass addition on coke strength and reactivity, Fuel 212, 487–497 (2018) [CrossRef] [Google Scholar]
  2. J. Madias, Electric furnace steelmaking, in: Treatise on Process Metallurgy (Elsevier, 2014), pp. 271–300 [CrossRef] [Google Scholar]
  3. J. Perpiñán, B. Peña, M. Bailera, V. Eveloy, P. Kannan, A. Raj, P. Lisbona, L.M. Romeo, Integration of carbon capture technologies in blast furnace based steel making: A comprehensive and systematic review, Fuel 336, 127074 (2023) [CrossRef] [Google Scholar]
  4. B. Rahmatmand, A. Tahmasebi, H. Lomas, T. Honeyands, P. Koshy, K. Hockings, A. Jayasekara, A technical review on coke rate and quality in low-carbon blast furnace ironmaking, Fuel 336, 127077 (2023) [CrossRef] [Google Scholar]
  5. J. Yu, R. Xu, J. Zhang, A. Zheng, A review on reduction technology of air pollutant in current China’s iron and steel industry, J. Cleaner Product. 414, 137659 (2023) [CrossRef] [Google Scholar]
  6. S. Cho, L. Tomas Da Rocha, B.-J. Chung, S.-M. Jung, Formation of NO and SO2 in the sintering process of iron ores, Metall. Mater. Trans. B 53, 84–95 (2022) [CrossRef] [Google Scholar]
  7. D. Reike, W.J.V. Vermeulen, S. Witjes, The circular economy: new or refurbished as CE 3.0? — Exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options, Resour. Conserv. Recycl. 135, 246–264 (2018) [CrossRef] [Google Scholar]
  8. M. Rahnama Mobarakeh, T. Kienberger, Climate neutrality strategies for energy-intensive industries: an Austrian case study, Clean. Eng. Technol. 10, 100545 (2022) [CrossRef] [Google Scholar]
  9. R. Minunno, T. O’Grady, G.M. Morrison, R.L. Gruner, Investigating the embodied energy and carbon of buildings: a systematic literature review and meta-analysis of life cycle assessments, Renew. Sustain. Energy Rev. 143, 110935 (2021) [CrossRef] [Google Scholar]
  10. M. Östman, K. Lundkvist, M. Larsson, Environmental system effects when including scrap preheating and surface cleaning in steel making routes, in: Linköping, Sweden (2011) pp. 1684–1691 [Google Scholar]
  11. S. Biswal, F. Pahlevani, V. Sahajwalla, Wastes as resources in steelmaking industry — current trends, Curr. Opin. Green Sustain. Chem. 26, 100377 (2020) [CrossRef] [Google Scholar]
  12. H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, H. Chen, An overview of utilization of steel slag, Proc. Environ Sci. 16, 791–801 (2012) [CrossRef] [Google Scholar]
  13. Slag recycling, (2020). https://www.recovery-worldwide.com/en/artikel/slag-recycling-3528047.html (accessed November 9, 2023). [Google Scholar]
  14. T. Norgate, N. Haque, M. Somerville, S. Jahanshahi, Biomass as a source of renewable carbon for iron and steelmaking, ISIJ Int. 52, 1472–1481 (2012) [CrossRef] [Google Scholar]
  15. J.R. Dankwah, P. Koshy, N.M. Saha-Chaudhury, P. O’Kane, C. Skidmore, D. Knights, V. Sahajwalla, Reduction of FeO in EAF steelmaking slag by metallurgical coke and waste plastics blends, ISIJ Int. 51, 498–507 (2011) [CrossRef] [Google Scholar]
  16. World Steel Association (2020). Water management in the steel industry. https://worldsteel.org/wp-content/uploads/Water-management-in-the-steel-industry.pdf (accessed August 19, 2024). [Google Scholar]
  17. Y. Meng, X. Zhu, Y. Zhang, Y. Su, F. Qu, C.S. Poon, J. Yan, D.C.W. Tsang, Valorizing inherent resources from waste streams for in-situ CO2 capture and sequestration in the steel industry, J. Clean. Prod. 458, 142486 (2024) [CrossRef] [Google Scholar]
  18. Y. Zheng, L. Gao, S. He, Analysis of the mechanism of energy consumption for CO2 capture in a power system, Energy 262, 125103 (2023) [CrossRef] [Google Scholar]
  19. L. Dong, H. Zhang, T. Fujita, S. Ohnishi, H. Li, M. Fujii, H. Dong, Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki’s experience and practice in Liuzhou and Jinan, J. Cleaner Prod. 59, 226–238 (2013) [CrossRef] [Google Scholar]
  20. M.T. Johansson, M. Söderström, Options for the Swedish steel industry − Energy efficiency measures and fuel conversion, Energy 36, 191–198 (2011) [CrossRef] [Google Scholar]
  21. E. da Costa, By-products and waste materials in steelmaking (1989). https://www.researchgate.net/publication/327633282_By-products_and_waste_materials_in_steelmaking. [Google Scholar]
  22. V. Colla, T.A. Branca, R. Pietruck, S. Wölfelschneider, A. Morillon, D. Algermissen, S. Rosendahl, H. Granbom, U. Martini, D. Snaet, Future research and developments on reuse and recycling of steelmaking by-products, Metals 13, 676 (2023) [CrossRef] [Google Scholar]
  23. J. Chen, Y. Xing, Y. Wang, W. Zhang, Z. Guo, W. Su, Application of iron and steel slags in mitigating greenhouse gas emissions: a review, Sci. Total Environ. 844, 157041 (2022) [CrossRef] [Google Scholar]
  24. H.T. Makkonen, J. Heino, L. Laitila, A. Hiltunen, E. Pöyliö, J. Härkki, Optimisation of steel plant recycling in Finland: dusts, scales and sludge, Resour. Conserv. Recycl. 35, 77–84 (2002) [CrossRef] [Google Scholar]
  25. A. Andersson, J. Isaksson, A. Lennartsson, F. Engström, Insights into the valorization of electric arc furnace slags as supplementary cementitious materials, J. Sustain. Metall. (2023) [Google Scholar]
  26. N.M. Piatak, M.B. Parsons, R.R. Seal, Characteristics and environmental aspects of slag: a review, Appl. Geochem. 57, 236–266 (2015) [CrossRef] [Google Scholar]
  27. Y.M. Yun, Y.S. Chu, S.K. Seo, J.H. Jeong, Analysis of reducing characteristics of direct reduced iron using blast furnace dust, J. Korean Ceram. Soc. 53, 444–449 (2016) [CrossRef] [Google Scholar]
  28. I. Cameron, M. Sukhram, K. Lefebvre, W. Davenport, The iron blast furnace process, in: Blast Furnace Ironmaking (Elsevier, 2020), pp. 1–18 [Google Scholar]
  29. J.M. Paris, J.G. Roessler, C.C. Ferraro, H.D. DeFord, T.G. Townsend, A review of waste products utilized as supplements to Portland cement in concrete, J. Cleaner Prod. 121, 1–18 (2016) [CrossRef] [Google Scholar]
  30. H. Shen, E. Forssberg, An overview of recovery of metals from slags, Waste Manag. 23, 933–949 (2003) [CrossRef] [Google Scholar]
  31. W. Johnson, The Effect of Chemical Composition of Blast-Furnace Slag on Compressive Strength and Durability Properties of Mortar Specimens (2017). https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=8607&context=etd ( accessed August 19, 2024). [Google Scholar]
  32. L.V. Fisher, A.R. Barron, The recycling and reuse of steelmaking slags — a review, Resour. Conserv. Recycl. 146, 244–255 (2019) [CrossRef] [Google Scholar]
  33. J. Rahou, H. Rezqi, M. El Ouahabi, N. Fagel, Characterization of Moroccan steel slag waste: The potential green resource for ceramic production, Constr. Build. Mater. 314, 125663 (2022) [CrossRef] [Google Scholar]
  34. R. Wei, L. Zhang, D. Cang, J. Li, X. Li, C.C. Xu, Current status and potential of biomass utilization in ferrous metallurgical industry, Renew. Sustain. Energy Rev. 68, 511–524 (2017) [CrossRef] [Google Scholar]
  35. S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, An overview of the organic and inorganic phase composition of biomass, Fuel 94, 1–33 (2012) [CrossRef] [Google Scholar]
  36. M. Guzzon, E.J. Chiarullo, M. Fulgosi, S. Porisiensi, Tenova’s dry granulation process. The experience of Pittini group on LF slag, in: Barcelona, Spain (2023) [Google Scholar]
  37. T.A. Branca, V. Colla, D. Algermissen, H. Granbom, U. Martini, A. Morillon, R. Pietruck, S. Rosendahl, Reuse and recycling of by-products in the steel sector: recent achievements paving the way to circular economy and industrial symbiosis in Europe, Metals 10, 345 (2020) [CrossRef] [Google Scholar]
  38. A. Petrucciani, A. Zaccara, I. Matino, V. Colla, M. Ferrer, Flowsheet model and simulation of produced slag in electric steelmaking to improve resource management and circular production, Chem. Eng. Trans. 96, 121–126 (2022) [Google Scholar]
  39. M. Falsafi, W. Terkaj, M. Guzzon, E. Malfa, R. Fornasiero, T. Tolio, Assessment of valorisation opportunities for secondary metallurgy slag through multi-criteria decision making, J. Cleaner Prod. 402, 136838 (2023) [CrossRef] [Google Scholar]
  40. I. Matino, V. Colla, T.A. Branca, L. Romaniello, Optimization of by-products reuse in the steel industry: valorization of secondary resources with a particular attention on their pelletization, Waste Biomass Valor 8, 2569–2581 (2017) [CrossRef] [Google Scholar]
  41. E. Nylund, Conditions for Industrial Symbiosis surrounding a hydrogen based steel industry, Master of Science Thesis, KTH Royal Institute of Technology (2023). https://www.diva-portal.org/smash/get/diva2:1772180/FULLTEXT01.pdf. [Google Scholar]
  42. J. Wang, Y. Zhang, K. Cui, T. Fu, J. Gao, S. Hussain, T.S. AlGarni, Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust − a review, J. Cleaner Prod. 298, 126788 (2021) [CrossRef] [Google Scholar]
  43. M. Omran, T. Fabritius, Utilization of blast furnace sludge for the removal of zinc from steelmaking dusts using microwave heating, Separat. Purif. Technol. 210, 867–884 (2019) [CrossRef] [Google Scholar]
  44. Md. Anik Hasan, R. Hossain, V. Sahajwalla, Critical metals (Lithium and Zinc) recovery from battery waste, ores, brine, and steel dust: a review, Process Saf. Environ. Protect. 178, 976–994 (2023) [CrossRef] [Google Scholar]
  45. G. Pu, W. Du, H. Cheng, M. Tian, Z. Chen, Y. Chen, D. Ju, Research on biomass waste utilization for synergetic reduction of stainless steel sludge and zinc-containing dust, J. Sustain. Metall. (2023) [Google Scholar]
  46. M. Al-harahsheh, J. Al-Nu’airat, A. Al-Otoom, I. Al-hammouri, H. Al-jabali, M. Al-zoubi, S. Abu Al’asal, Treatments of electric arc furnace dust and halogenated plastic wastes: a review, J. Environ. Chem. Eng. 7, 102856 (2019) [CrossRef] [Google Scholar]
  47. REcovering Metals and Mineral FRAction from steelmaking residues, (2022). https://cordis.europa.eu/project/id/101058362 (accessed November 9, 2023). [Google Scholar]
  48. M. Simoni, W. Reiter, ReMFra − possibilities for residues from steel plants, in: Barcelona, Spain (2023) [Google Scholar]
  49. iRecovery System (2023). https://tenova.com/technologies/irecovery-system (accessed November 9, 2023). [Google Scholar]
  50. Y. Yang, K. Raipala, L. Holappa, Ironmaking, in: Treatise on Process Metallurgy (Elsevier, 2014), pp. 2–88 [CrossRef] [Google Scholar]
  51. V. Smil, Materials in Modern Iron and Steel Production, in: Still the Iron Age (Elsevier, 2016), pp. 115–138 [CrossRef] [Google Scholar]
  52. B. Björkman, C. Samuelsson, Recycling of steel, in: Handbook of Recycling, State-of-the-Art for Practitioners, Analysts, and Scientists ( Elsevier, Amsterdam, 2014) [Google Scholar]
  53. L.D.D. Harvey, Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications, Renew. Sustain. Energy Rev. 138, 110553 (2021) [CrossRef] [Google Scholar]
  54. L. Reijnders, Conserving functionality of relatively rare metals associated with steel life cycles: a review, J. Cleaner Prod. 131, 76–96 (2016) [CrossRef] [Google Scholar]
  55. T. Emi, Improving steelmaking and steel properties, in: Fundamentals of Metallurgy (Elsevier, 2005), pp. 503–554 [CrossRef] [Google Scholar]
  56. W. Wang, Cost optimization of scrap when making steel with an electric arc furnace, Master of Science Thesis, McGill University (2012) [Google Scholar]
  57. E. Sandberg, B. Lennox, P. Undvall, Scrap management by statistical evaluation of EAF process data, Control Eng. Pract. 15, 1063–1075 (2007) [CrossRef] [Google Scholar]
  58. Tenova and ORI Martin Launch their Lighthouse Plant “Acciaio_4.0 (2019). https://tenova.com/newsroom/press-releases/tenova-and-ori-martin-launch-their-lighthouse-plant-acciaio40 (accessed August 20, 2024) [Google Scholar]
  59. CirculArity Enhancements by Low quality Scrap Analysis and Refinement, CAESAR (2022). https://cordis.europa.eu/project/id/101058520 (accessed November 9, 2023) [Google Scholar]
  60. J.-C. Pierret, Circularity enhancements by low quality scrap analysis and refinement (CAESAR HEU project), in: Barcelona, Spain (2023) [Google Scholar]
  61. J. Oda, K. Akimoto, T. Tomoda, Long-term global availability of steel scrap, Resour. Conserv. Recycl. 81, 81–91 (2013) [CrossRef] [Google Scholar]
  62. L. Kieush, Coal pyrolysis products utilisation for synthesis of carbon nanotubes, Petrol. Coal 61, 461–463 (2019) [Google Scholar]
  63. L. Kieush, A. Koveria, J. Schenk, K. Rysbekov, V. Lozynskyi, H. Zheng, A. Matayev, Investigation into the effect of multi-component coal blends on properties of metallurgical coke via petrographic analysis under industrial conditions, Sustainability 14, 9947 (2022) [CrossRef] [Google Scholar]
  64. I. Cameron, M. Sukhram, K. Lefebvre, W. Davenport, Metallurgical coke − a key to blast furnace operations, in: Blast Furnace Ironmaking (Elsevier, 2020), pp. 557–572 [Google Scholar]
  65. L. Lu, J. Pan, D. Zhu, Alternative ironmaking processes and their ferrous burden quality requirements, in: Iron Ore (Elsevier, 2022), pp. 605–626 [CrossRef] [Google Scholar]
  66. C. Harpprecht, T. Naegler, B. Steubing, A. Tukker, S. Simon, Decarbonization scenarios for the iron and steel industry in context of a sectoral carbon budget: Germany as a case study, J. Cleaner Prod. 380, 134846 (2022) [CrossRef] [Google Scholar]
  67. H. Suopajärvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kemppainen, C. Wang, A. Phounglamcheik, S. Tuomikoski, N. Norberg, A. Andefors, M. Öhman, U. Lassi, T. Fabritius, Use of biomass in integrated steelmaking − Status quo, future needs and comparison to other low-CO2 steel production technologies, Appl. Energy 213, 384–407 (2018) [CrossRef] [Google Scholar]
  68. A. Demirbaş, Calculation of higher heating values of biomass fuels, Fuel 76, 431–434 (1997) [CrossRef] [Google Scholar]
  69. S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the chemical composition of biomass, Fuel 89, 913–933 (2010) [CrossRef] [Google Scholar]
  70. A. Pandey, S. Negi, P. Binod, C. Larroche, Handbook of pretreatment of biomass, processes and technologies (Elsevier, 2015) [Google Scholar]
  71. H. Rezaei, M. Tajilrou, J.S. Lee, K. Singaraveloo, A. Lau, S. Sokhansanj, Evolution of biomass particles during pelletization process, Particuology 86, 182–187 (2024) [CrossRef] [Google Scholar]
  72. Y. Li, High-pressure densification of wood residues to form an upgraded fuel, Biomass and Bioenergy 19, 177–186 (2000) [CrossRef] [Google Scholar]
  73. H. Rezaei, C.J. Lim, A. Lau, S. Sokhansanj, Size, shape and flow characterization of ground wood chip and ground wood pellet particles, Powder Technol. 301, 737–746 (2016) [CrossRef] [Google Scholar]
  74. K.B. Kota, S. Shenbagaraj, P.K. Sharma, A.K. Sharma, P.K. Ghodke, W.-H. Chen, Biomass torrefaction: an overview of process and technology assessment based on global readiness level, Fuel 324, 124663 (2022) [CrossRef] [Google Scholar]
  75. R. Wang, J. Jia, Q. Jin, H. Chen, H. Liu, Q. Yin, Z. Zhao, Forming mechanism of coke microparticles from polymerization of aqueous organics during hydrothermal carbonization process of biomass, Carbon 192, 50–60 (2022) [CrossRef] [Google Scholar]
  76. B. Babinszki, E. Jakab, Z. Sebestyén, M. Blazsó, B. Berényi, J. Kumar, B.B. Krishna, T. Bhaskar, Z. Czégény, Comparison of hydrothermal carbonization and torrefaction of azolla biomass: analysis of the solid products, J. Anal. Appl. Pyroly. 149, 104844 (2020) [CrossRef] [Google Scholar]
  77. B. Garcia, O. Alves, B. Rijo, G. Lourinho, C. Nobre, Biochar: production, applications, and market prospects in Portugal, Environments 9, 95 (2022) [CrossRef] [Google Scholar]
  78. X. Hu, M. Gholizadeh, Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage, J. Energy Chem. 39, 109–143 (2019) [CrossRef] [Google Scholar]
  79. G. Wang, Y. Dai, H. Yang, Q. Xiong, K. Wang, J. Zhou, Y. Li, S. Wang, A review of recent advances in biomass pyrolysis, Energy Fuels 34, 15557–15578 (2020) [CrossRef] [Google Scholar]
  80. Converting wood waste into biofuel from steelmaking, Torero, (2017). https://cordis.europa.eu/article/id/443175-converting-wood-waste-into-biofuel-from-steelmaking (accessed November 13, 2023) [Google Scholar]
  81. B. Riems, G. Ounoughene, H. Draper, M. Hingsamer, I. Brenner-Fließer, G. Jungmeier, M. Hadler, The Torero project − substituting fossil carbon with biomass in steelmaking, in: Barcelona, Spain (2023) [Google Scholar]
  82. Production of sustainable, advanced bio-ethANOL through an innovative gas-fermentation process using exhaust gases emitted in the STEEL industry (2024). https://cordis.europa.eu/project/id/656437 (accessed November 14, 2023). [Google Scholar]
  83. M.G. Montiano, E. Díaz-Faes, C. Barriocanal, R. Alvarez, Influence of biomass on metallurgical coke quality, Fuel 116, 175–182 (2014) [CrossRef] [Google Scholar]
  84. J.A. MacPhee, J.F. Gransden, L. Giroux, J.T. Price, Possible CO2 mitigation via addition of charcoal to coking coal blends, Fuel Process. Technol. 90, 16–20 (2009) [CrossRef] [Google Scholar]
  85. M. Rejdak, R. Bigda, M. Wojtaszek, Use of alternative raw materials in coke-making: new insights in the use of lignites for blast furnace coke production, Energies 13, 2832 (2020) [CrossRef] [Google Scholar]
  86. T. Matsumura, M. Ichida, T. Nagasaka, K. Kato, Carbonization behaviour of woody biomass and resulting metallurgical coke properties, ISIJ Int. 48, 572–577 (2008) [CrossRef] [Google Scholar]
  87. T. Norgate, D. Langberg, Environmental and economic aspects of charcoal use in steelmaking, ISIJ Int. 49, 587–595 (2009) [CrossRef] [Google Scholar]
  88. A. Babich, D. Senk, M. Fernandez, Charcoal behaviour by its injection into the modern blast furnace, ISIJ Int. 50, 81–88 (2010) [CrossRef] [Google Scholar]
  89. J.A. De Castro, A.J. Da Silva, Y. Sasaki, J. Yagi, A six-phases 3-D model to study simultaneous injection of high rates of pulverized coal and charcoal into the blast furnace with oxygen enrichment, ISIJ Int. 51, 748–758 (2011) [CrossRef] [Google Scholar]
  90. G. Jha, S. Soren, Study on applicability of biomass in iron ore sintering process, Renew. Sustain. Energy Rev. 80, 399–407 (2017) [CrossRef] [Google Scholar]
  91. L. Kieush, M. Boyko, A. Koveria, A. Khudyakov, A. Ruban, Utilization of the prepyrolyzed technical hydrolysis lignin as a fuel for iron ore sintering, EEJET 1, 34–39 (2019) [CrossRef] [Google Scholar]
  92. R. Wei, X. Zheng, Y. Zhu, S. Feng, H. Long, C.C. Xu, Hydrothermal bio-char as a foaming agent for electric arc furnace steelmaking: performance and mechanism, Appl. Energy 353, 122084 (2024) [CrossRef] [Google Scholar]
  93. L. Kieush, J. Schenk, A. Koveria, A. Hrubiak, Biocoke thermochemical properties for foamy slag formations in electric arc furnace steelmaking, Metals 14, 13 (2023) [CrossRef] [Google Scholar]
  94. J.-X. Fu, C. Zhang, W.-S. Hwang, Y.-T. Liau, Y.-T. Lin, Exploration of biomass char for CO2 reduction in RHF process for steel production, Int. J. Greenhouse Gas Control 8, 143–149 (2012) [CrossRef] [Google Scholar]
  95. H. Han, D. Duan, P. Yuan, D. Li, Biomass reducing agent utilisation in rotary hearth furnace process for DRI production, Ironmak. Steelmak. 42, 579–584 (2015) [CrossRef] [Google Scholar]
  96. P. Yuan, B. Shen, D. Duan, G. Adwek, X. Mei, F. Lu, Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process, Energy 141, 472–482 (2017) [CrossRef] [Google Scholar]
  97. A. Babich, D. Senk, Coal use in iron and steel metallurgy, in: The Coal Handbook: Towards Cleaner Production (Elsevier, 2013), pp. 267–311 [CrossRef] [Google Scholar]
  98. A. Babich, D. Senk, H.W. Gudenau, Effect of coke reactivity and nut coke on blast furnace operation, Ironmak. Steelmak. 36, 222–229 (2009) [CrossRef] [Google Scholar]
  99. L. Florentino-Madiedo, E. Díaz-Faes, C. Barriocanal, Reactivity of biomass containing briquettes for metallurgical coke production, Fuel Process. Technol. 193, 212–220 (2019) [CrossRef] [Google Scholar]
  100. E. Mousa, C. Wang, J. Riesbeck, M. Larsson, Biomass applications in iron and steel industry: an overview of challenges and opportunities, Renew. Sustain. Energy Rev. 65, 1247–1266 (2016) [CrossRef] [Google Scholar]
  101. K.W. Ng, J.A. MacPhee, L. Giroux, T. Todoschuk, Reactivity of bio-coke with CO2, Fuel Process. Technol. 92, 801–804 (2011) [CrossRef] [Google Scholar]
  102. M. Castro-Díaz, C.N. Uguna, L. Florentino, E. Díaz-Faes, L.A. Stevens, C. Barriocanal, C.E. Snape, Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization, J. Anal. Appl. Pyrol. 124, 742–751 (2017) [CrossRef] [Google Scholar]
  103. X. Xing, Pore structure and integrity of a bio-coke under simulated blast furnace conditions, Energy Fuels 33, 2133–2141 (2019) [CrossRef] [Google Scholar]
  104. A. Koskela, Utilisation of lignin-based biocarbon in pyrometallurgical applications, PhD thesis, University of Oulu Graduate School; University of Oulu (2023). http://jultika.oulu.fi/files/isbn9789526236681.pdf (accessed December 11, 2023). [Google Scholar]
  105. BIOmass for COkemaking DEcarbonization, (2023). https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/how-to-participate/org-details/890031358/project/101112264/program/43252449/details (accessed November 14, 2023). [Google Scholar]
  106. R. Attrotto, BioCoDe. Biomass for cokemaking decarbonization, in: Barcelona, Spain (2023) [Google Scholar]
  107. S.P.E. Forsmo, S.-E. Forsmo, P.-O. Samskog, B.M.T. Björkman, Mechanisms in oxidation and sintering of magnetite iron ore green pellets, Powder Technol. 183, 247–259 (2008) [CrossRef] [Google Scholar]
  108. X. Fan, Z. Ji, M. Gan, X. Chen, T. Jiang, Integrated assessment on the characteristics of straw-based fuels and their effects on iron ore sintering performance, Fuel Process. Technol. 150, 1–9 (2016) [CrossRef] [Google Scholar]
  109. L. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, S. Jahanshahi, J.G. Mathieson, Substitution of charcoal for coke breeze in iron ore sintering, ISIJ Int. 53, 1607–1616 (2013) [CrossRef] [Google Scholar]
  110. T. Kawaguchi, M. Hara, Utilization of biomass for iron ore sintering, ISIJ Int. 53, 1599–1606 (2013) [CrossRef] [Google Scholar]
  111. M. Gan, X. Fan, Z. Ji, T. Jiang, X. Chen, Z. Yu, G. Li, L. Yin, Application of biomass fuel in iron ore sintering: influencing mechanism and emission reduction, Ironmak. Steelmak. 42, 27–33 (2015) [CrossRef] [Google Scholar]
  112. European Commission. Directorate General for Research and Innovation., Alternate carbon sources for sintering of iron ore (Acasos)., Publications Office, LU (2013). https://data.europa.eu/doi/10.2777/58105 (accessed November 9, 2023). [Google Scholar]
  113. S. Jahanshahi, J.G. Mathieson, M.A. Somerville, N. Haque, T.E. Norgate, A. Deev, Y. Pan, D. Xie, P. Ridgeway, P. Zulli, Development of low-emission integrated steelmaking process, J. Sustain. Metall. 1, 94–114 (2015) [CrossRef] [Google Scholar]
  114. T.C. Ooi, E. Aries, B.C.R. Ewan, D. Thompson, D.R. Anderson, R. Fisher, T. Fray, D. Tognarelli, The study of sunflower seed husks as a fuel in the iron ore sintering process, Minerals Eng. 21, 167–177 (2008) [CrossRef] [Google Scholar]
  115. G. Jha, S. Soren, K. Deo Mehta, Partial substitution of coke breeze with biomass and charcoal in metallurgical sintering, Fuel 278, 118350 (2020) [CrossRef] [Google Scholar]
  116. N.A. El-Hussiny, A.A. Khalifa, A.A. El-Midany, A.A. Ahmed, M.E.H. Shalabi, Effect of replacement coke breeze by charcoal on technical operation of iron ore sintering, J. Sci. Eng. Res. 6, 681–686 (2015) [Google Scholar]
  117. Z. Cheng, J. Yang, L. Zhou, Y. Liu, Z. Guo, Q. Wang, Experimental study of commercial charcoal as alternative fuel for coke breeze in iron ore sintering process, Energy Convers. Manag. 125, 254–263 (2016) [CrossRef] [Google Scholar]
  118. R.Z. Abd Rashid, H. Mohd. Salleh, M.H. Ani, N.A. Yunus, T. Akiyama, H. Purwanto, Reduction of low grade iron ore pellet using palm kernel shell, Renew. Energy 63, 617–623 (2014) [CrossRef] [Google Scholar]
  119. S. Luo, C. Ma, P. Sun, Reduction behavior and reaction kinetics of iron ore-biomass composite pellets, Chin. J. Eng. 37, 150–156 (2015) [Google Scholar]
  120. S. Ueda, K. Watanabe, K. Yanagiya, R. Inoue, T. Ariyama, Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace, ISIJ Int. 49, 1505–1512 (2009) [CrossRef] [Google Scholar]
  121. A. Mousa, H. Ahmed, N. Viswanathan, M. Larsson, Recent trends in ironmaking blast furnace technology to mitigate CO2 emissions: tuyeres injection, in: Ironmaking and Steelmaking Processes: Greenhouse Emissions, Control and Reduction (Springer International Publishing: Switzerland, 2016), pp. 173–197 [CrossRef] [Google Scholar]
  122. M. Jeguirim, L. Limousy, eds., Char and carbon materials derived from biomass: production, characterization and applications ( Elsevier, Amsterdam, 2019) [Google Scholar]
  123. Y. Ueki, R. Yoshiie, I. Naruse, K. Ohno, T. Maeda, K. Nishioka, M. Shimizu, Reaction behavior during heating biomass materials and iron oxide composites, Fuel 104, 58–61 (2013) [CrossRef] [Google Scholar]
  124. J. Adilson De Castro, G.A.D. Medeiros, E.M.D. Oliveira, M.F. De Campos, H. Nogami, The mini blast furnace process: an efficient reactor for green pig iron production using charcoal and hydrogen-rich gas: a study of cases, Metals 10, 1501 (2020) [CrossRef] [Google Scholar]
  125. C.A. Scarpinella, T. Cyro, S.Y. Tagusagawa, M.B. Mourao, F.B. Lenz e Silva, Charcoal ironmaking: a contribution for CO2 mitigation, in: Metals and Materials Processing in a Clean Environment, Cancun, Mexico (2011) pp. 109–121 [Google Scholar]
  126. J. Orre, L.S. Ökvist, A. Bodén, B. Björkman, Understanding of blast furnace performance with biomass introduction, Minerals 11, 157 (2021) [CrossRef] [Google Scholar]
  127. J.A. De Castro, G.D.M. Araújo, I.D.O. Da Mota, Y. Sasaki, J. Yagi, Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces, J. Mater. Res. Technol. 2, 308–314 (2013) [CrossRef] [Google Scholar]
  128. G. Wang, R. Li, J. Dan, X. Yuan, J. Shao, J. Liu, K. Xu, T. Li, X. Ning, C. Wang, Preparation of biomass hydrochar and application analysis of blast furnace injection, Energies 16, 1216 (2023) [CrossRef] [Google Scholar]
  129. L. Sundqvist Ökvist, M. Lundgren, Experiences of bio-coal applications in the blast furnace process—opportunities and limitations, Minerals 11, 863 (2021) [CrossRef] [Google Scholar]
  130. H. Suopajärvi, E. Pongrácz, T. Fabritius, The potential of using biomass-based reducing agents in the blast furnace: a review of thermochemical conversion technologies and assessments related to sustainability, Renew. Sustain. Energy Rev. 25, 511–528 (2013) [CrossRef] [Google Scholar]
  131. M. Rehfeldt, E. Worrell, W. Eichhammer, T. Fleiter, A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030, Renew. Sustain. Energy Rev. 120, 109672 (2020) [CrossRef] [Google Scholar]
  132. L. Kieush, J. Schenk, A. Koveria, A. Hrubiak, H. Hopfinger, H. Zheng, Evaluation of slag foaming behavior using renewable carbon sources in electric arc furnace-based steel production, Energies 16, 4673 (2023) [CrossRef] [Google Scholar]
  133. E. Hoikkaniemi, P. Sulasalmi, V.-V. Visuri, T. Fabritius, Biochar as a slag foaming agent in EAF − a novel experimental setup, in: Oulu, Finland, 2023. [Google Scholar]
  134. A. Kalde, T. Demus, T. Echterhof, H. Pfeifer, Determining the reactivity of biochar-agglomerates to replace fossil coal in electric arc furnace steelmaking, in: Proceedings of the EUBCE 2015 Online Conference Proceedings (2015) pp. 497–507 [Google Scholar]
  135. I. Shukla, Potential of renewable agricultural wastes in the smart and sustainable steelmaking process, J. Cleaner Prod. 370, 133422 (2022) [CrossRef] [Google Scholar]
  136. N.F.M. Yunos, M. Zaharia, M.A. Idris, D. Nath, R. Khanna, V. Sahajwalla, Recycling agricultural waste from palm shells during electric arc furnace steelmaking, Energy Fuels 26, 278–286 (2012) [CrossRef] [Google Scholar]
  137. B. Fidalgo, C. Berrueco, M. Millan, Chars from agricultural wastes as greener fuels for electric arc furnaces, J. Anal. Appl. Pyrol. 113, 274–280 (2015) [CrossRef] [Google Scholar]
  138. C. DiGiovanni, D. Li, K.W. Ng, X. Huang, Ranking of injection biochar for slag foaming applications in steelmaking, Metals 13, 1003 (2023) [CrossRef] [Google Scholar]
  139. X.-A. Huang, K.W. Ng, L. Giroux, M. Duchesne, Carbonaceous material properties and their interactions with slag during electric arc furnace steelmaking, Metall. Mater. Trans. B 50, 1387–1398 (2019) [CrossRef] [Google Scholar]
  140. A. Funke, T. Demus, T. Willms, L. Schenke, T. Echterhof, A. Niebel, H. Pfeifer, N. Dahmen, Application of fast pyrolysis char in an electric arc furnace, Fuel Process. Technol. 174, 61–68 (2018) [CrossRef] [Google Scholar]
  141. Sustainable EAF steel production (GREENEAF) (2013). https://op.europa.eu/en/publication-detail/-/publication/e7dc500c-82de-4c2d-8558-5e24a2d335fb (accessed November 13, 2023) [Google Scholar]
  142. F. Cirilli, G. Baracchini, L. Bianco, EAF long term industrial trials of utilization of char from biomass as fossil coal substitute, La Metallurgia Italiana 109, 13–17 (2017) [Google Scholar]
  143. T. Meier, T. Hay, T. Echterhof, H. Pfeifer, T. Rekersdrees, L. Schlinge, S. Elsabagh, H. Schliephake, Process modeling and simulation of biochar usage in an electric arc furnace as a substitute for fossil coal, Steel Research Int. 88, 1600458 (2017) [CrossRef] [Google Scholar]
  144. C. Wang, Y.-C. Lu, L. Brabie, G. Wang, A pilot trial investigation of using hydrochar derived from biomass residues for EAF process, in Advances in Pyrometallurgy, edited by C. Fleuriault, J.D. Steenkamp, D. Gregurek, J.F. White, Q.G. Reynolds, P.J. Mackey, S.A.C. Hockaday (Springer Nature Switzerland, Cham, 2023 ) pp. 153–163 [CrossRef] [Google Scholar]
  145. E. Sandberg, Pilot tests with use of secondary material streams as replacement of fossil carbon and burnt lime in EAF steelmaking, in: Barcelona, Spain (2023) [Google Scholar]
  146. H. Mandova, W.F. Gale, A. Williams, A.L. Heyes, P. Hodgson, K.H. Miah, Global assessment of biomass suitability for ironmaking − opportunities for co-location of sustainable biomass, iron and steel production and supportive policies, Sustain. Energy Technolog. Assess. 27, 23–39 (2018) [CrossRef] [Google Scholar]
  147. B. Brooks, S.K. Rish, H. Lomas, A. Jayasekara, A. Tahmasebi, Advances in low carbon cokemaking − influence of alternative raw materials and coal properties on coke quality, J. Anal. Appl. Pyrol. 173, 106083 (2023) [CrossRef] [Google Scholar]
  148. J. Cai, G. Yu, H. Liao, K. Qian, P. Zhao, Y. He, Disposal of waste plastics with traditional coking process, J. Iron Steel Res. Int. 13, 5–9 (2006) [CrossRef] [Google Scholar]
  149. S. Devasahayam, G. Bhaskar Raju, C. Mustansar Hussain, Utilization and recycling of end of life plastics for sustainable and clean industrial processes including the iron and steel industry, Mater. Sci. Energy Technolog. 2, 634–646 (2019) [Google Scholar]
  150. S. Nomura, Behavior of chlorine during co-carbonization of coal and chloride compounds in cokemaking process, Int. J. Coal Geol. 130, 27–32 (2014) [CrossRef] [Google Scholar]
  151. S. Nomura, The effect of plastic addition on coal caking properties during carbonization, Fuel 82, 1775–1782 (2003) [CrossRef] [Google Scholar]
  152. S. Nomura, Use of waste plastics in coke oven: a review, J. Sustain. Metall. 1, 85–93 (2015) [CrossRef] [Google Scholar]
  153. S. Nomura, K. Kato, The effect of plastic size on coke quality and coking pressure in the co-carbonization of coal/plastic in coke oven, Fuel 85, 47–56 (2006) [CrossRef] [Google Scholar]
  154. S. Nomura, K. Kato, Basic study on separate charge of coal and waste plastics in coke oven chamber, Fuel 84, 429–434 (2005) [CrossRef] [Google Scholar]
  155. M. Knepper, A. Babich, D. Senk, T. Buergler, C. Feilmayr, N. Kieberger, Waste plastics injection: reaction kinetics and effect on the blast furnace process, in: Rio de Janeiro, RJ, Brazil (2012) pp. 798–810 [Google Scholar]
  156. A. Babich, D. Senk, M. Knepper, S. Benkert, Conversion of injected waste plastics in blast furnace, Ironmak. Steelmak. 43, 11–21 (2016) [CrossRef] [Google Scholar]
  157. S. Devasahayam, Review: opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes, Sustain. Mater. Technolog. 22, e00119 (2019) [Google Scholar]
  158. I. Bellemans, K. Verbeken, Towards circularity in steel industry: a joint journey between industry and universities along multiple TRL levels, in: Barcelona, Spain, 2023. [Google Scholar]
  159. S. Maroufi, M. Mayyas, I. Mansuri, P. O’Kane, C. Skidmore, Z. Jin, A. Fontana, V. Sahajwalla, Study of reaction between slag and carbonaceous materials, Metall. Mater. Trans. B 48, 2316–2323 (2017) [CrossRef] [Google Scholar]
  160. M. Zaharia, V. Sahajwalla, B.-C. Kim, R. Khanna, N. Saha-Chaudhury, P. O’Kane, J. Dicker, C. Skidmore, D. Knights, Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber Tyres blends, Energy Fuels 23, 2467–2474 (2009) [CrossRef] [Google Scholar]
  161. V. Sahajwalla, Recycling Waste Plastics in EAF Steelmaking: Carbon/Slag Interactions of HDPE-Coke Blends (Steel Research International, 2009) [Google Scholar]
  162. S. Kongkarat, R. Khanna, P. Koshy, P. O’kane, V. Sahajwalla, Recycling waste polymers in EAF steelmaking: influence of polymer composition on carbon/slag interactions, ISIJ Int. 52, 385–393 (2012) [CrossRef] [Google Scholar]
  163. EAF working with polymers derived from plastic residue in substitution of fossil fuel (2020). https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/how-to-participate/org-details/962112446/project/899415/program/31061225/details (accessed November 15, 2023). [Google Scholar]
  164. I. Kofler, M. Derntl, Pilot demonstration of carbon capture and utilization technology to close the carbon cycle in the steel industry. Presented at A Circular Economy Driven by European Steel, in: Barcelona, Spain (2023) [Google Scholar]
  165. P. Brandl, M. Bui, J.P. Hallett, N. Mac Dowell, A century of re-exploring CO2 capture solvents, Int. J. Greenhouse Gas Control 120, 103771 (2022) [CrossRef] [Google Scholar]
  166. S. Manocha, CO2 (CCUS) focus on capture & usage, in: Barcelona, Spain (2023) [Google Scholar]
  167. V. Colla, I. Matino, T.A. Branca, B. Fornai, L. Romaniello, F. Rosito, Efficient use of water resources in the steel industry, Water 9, 874 (2017) [CrossRef] [Google Scholar]
  168. I. Matino, V. Colla, A. Maddaloni, S. Cateni, V. Iannino, A. Petrucciani, A. Zaccara, T.A. Branca, R. Matino, M. Chini, L. Bianco, S. Porisiensi, L. De Cecco, G. Tomat, F. Nodusso, G. Lepore, Decreasing the use of high-quality make-up water in the steel sector by coupling enhanced sensors circuit with decision and support tool, Water 15, 3208 (2023) [CrossRef] [Google Scholar]
  169. T.A. Branca, V. Colla, M.I. Pistelli, L.E. Faraci, F. Cirilli, A. Schröder, Effects of industrial symbiosis and energy efficiency in terms of new skills requirement in the steel sector, in: Barcelona, Spain (2023) [Google Scholar]
  170. Worldsteel Association. Fact sheet “Working in the steel industry,” (2021). https://worldsteel.org/wp-content/uploads/Fact-sheet-Working-in-the-steel-industry.pdf (accessed November 14, 2023). [Google Scholar]
  171. H. Oterdoom, European steel: playing a key role in technological innovation, self-reliance, ethics, and circularity of more than steel alone, in: Barcelona, Spain (2023) [Google Scholar]
  172. A. Schröder, Skills for industrial symbiosis and energy efficiency, in: Barcelona, Spain (2023) [Google Scholar]
  173. European Steel Technology Platform (ESTEP): Clean Steel Partnership Roadmap (2021). https://www.estep.eu/assets/Uploads/CSP-SRIA-Oct2021-clean.pdf (accessed November 9, 2023). [Google Scholar]
  174. C. Pietrosanti, V. Colla, Digital tools pave the way to Circular Economy in the European steel sector through new business models, in: Barcelona, Spain (2023) [Google Scholar]
  175. T. Adisorn, L. Tholen, T. Götz, Towards a digital product passport fit for contributing to a circular economy, Energies 14, 2289 (2021) [CrossRef] [Google Scholar]
  176. Worldsteel Association. Fact sheet “Scrap use in the steel industry,” (2021). https://worldsteel.org/wp-content/uploads/Fact-sheet-on-scrap_2021.pdf (accessed November 14, 2023) [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.