Numéro
Matériaux & Techniques
Volume 112, Numéro 5, 2024
Special Issue on ‘Circular Economy initiatives and solutions in the steel sector’, edited by Valentina Colla and Ismael Matino
Numéro d'article 504
Nombre de pages 11
Section Circular economy, recycling, reuse, sobriety
DOI https://doi.org/10.1051/mattech/2024029
Publié en ligne 3 décembre 2024
  1. European Commission, REPowerEU Factsheet, 2022, last access May 23, 2024. https://ec.europa.eu/commission/presscorner/api/files/attachment/871871/Factsheet%20-%20REPowerEU.pdf [Google Scholar]
  2. European Commission, Towards competitive and clean European steel, 2021, last access May 23, 2024. https://commission.europa.eu/document/download/fcd83469-cb1c-4c4f-842f-0c94e5308007_en?filename=swd-competitive-clean-european-steel_en.pdf [Google Scholar]
  3. R.G.D. Pinto, A.S. Szklo, R. Rathmann, CO2 emissions mitigation strategy in the Brazilian iron and steel sector-From structural to intensity effects, Energy Policy, 114, 380–393 (2018). https://doi.org/10.1016/j.enpol.2017.11.040 [CrossRef] [Google Scholar]
  4. European Steel Technology Platform, Improve the EAF scrap route for a sustainable value chain in the EU Circular Economy scenario, 2021, last access May 23, 2024. https://www.estep.eu/assets/Publications/Improve-the-EAF-scrap-route-Roadmap-Final-V2-3.pdf [Google Scholar]
  5. T. Norgate, N. Haque, M. Somerville et al., Biomass as a source of renewable carbon for iron and steelmaking, ISIJ Int. 52(8), 1472-1481 (2012). https://doi.org/10.2355/isijinternational.52.1472 [Google Scholar]
  6. J. Sherwood, The significance of biomass in a circular economy, Bioresource Technol. 300, 122755 (2020). https://doi.org/10.1016/j.biortech.2020.122755 [CrossRef] [Google Scholar]
  7. L. Wibberley, J. Nunn, P. Scaife et al., Large scale use of forest biomass for iron and steelmaking. NSW Government Sustainable Energy Research Development Fund (SERDF) Report by BHP Minerals Technology and NSW State Forests. (2001) [Google Scholar]
  8. J. Kozinski, Application of biomass for the GHG mitigation in the metallurgical industry, in: Papers of BIOCAP Canada Foundation's 1. national conference: capturing Canada's green advantage, Ottawa, ON (Canada), 2005, pp. 1- 9. [Google Scholar]
  9. T. Echterhof, H. Pfeifer, Study on biochar usage in the electric arc furnace, in: Proceedings of the 2nd International Conference Clean Technologies in the Steel Industry, Budapest, Hungary, 2011, pp. 26–28 [Google Scholar]
  10. T. Demus, T. Echterhof, H. Pfeifer, Replacement of fossil carbon with biogenic residues in the electric steelmaking process, Proc. International Workshop EAF Perspectives on Automation, Materials, Energy & Environment, Milan, Italy, March 29-30, 2012 [Google Scholar]
  11. T. Demus, T. Reichel, T. Echterhof et al., Biochar usage in EAF-steelmaking potential and feasibility, in: Proceedings of the 1st European Steel Technology & Application Days (ESTAD) & 31st Journées Sidérurgiques Internationales (JSI), Paris, France, 2014, pp. 7–8 [Google Scholar]
  12. T. Reichel, T. Demus, T. Echterhof et al., Increasing the sustainability of the steel production in the electric arc furnace by substituting fossil coal with biochar, in: Proceedings of the 4th Central European Biomass Conference, Graz, Austria, Vol. 16, 2014 [Google Scholar]
  13. A. Kalde, T. Demus, T. Echterhof et al., Determining the reactivity of biochar-agglomerates to replace fossil coal in electric arc furnace steelmaking, in: Proceedings of the EUBCE 2015 Online Conference Proceedings. 23rd European Biomass Conference and Exhibition, Vienna, Austria, 2015, pp. 1–4 [Google Scholar]
  14. T. Echterhof, Review on the use of alternative carbon sources in EAF steelmaking. Metals, 11(2), 222 (2021). https://doi/org/10.3390/met11020222 [CrossRef] [Google Scholar]
  15. R. Wei, L. Zhang, D. Cang et al., Current status and potential of biomass utilization in ferrous metallurgical industry, Renew. Sustain. Energy Rev. 68, 511-524 (2017). https://doi/org/10.1016/j.rser.2016.10.013 [Google Scholar]
  16. C. Mapelli G. Dall’Osto, D. Mombelli et al., Future scenarios for reducing emissions and consumption in the Italian steelmaking industry, Steel Res. Int. 93(5), 2100631 (2022). https://doi/org/10.1002/srin.202100631 [Google Scholar]
  17. G. Dall’Osto, D. Mombelli, A. Pittalis et al., Biochar and other carbonaceous materials used in steelmaking: possibilities and synergies for power generation by direct carbon fuel cell, Biomass Bioenerg. 177, 106930 (2023). https://doi.org/10.1016/j.biombioe.2023.106930 [CrossRef] [Google Scholar]
  18. J.P. Gorez, B. Gros, J.P. Birat et al., Recycling used tires in the electric arc furnace. Metall. Res. Technol. 100(1), 17–23 (2003) [Google Scholar]
  19. M. Zaharia, V. Sahajwalla, N. Saha-Chaudhury et al., Recycling of rubber tyres in electric arc furnace steelmaking: carbon/slag reactions of coke/rubber blends, High Temp. Mater. Process. 31(4-5), 593–602 (2012) [CrossRef] [Google Scholar]
  20. A. Cardarelli, M. De Santis, F. Cirilli et al., Computational fluid dynamics analysis of biochar combustion in a simulated ironmaking electric arc furnace, Fuel, 328, 125267 (2022). https://doi.org/10.1016/j.fuel.2022.125267 [CrossRef] [Google Scholar]
  21. L. Bianco, S. Porisiensi, From linear to circular economy in Ferriere Nord: ladle slag and biomass case studies, La Metall. Italiana, 108(10), 19-26 (2016) [Google Scholar]
  22. F. Cirilli, G. Baracchini, L. Bianco, EAF long term industrial trials of utilization of char from biomass as fossil coal substitute, La Metall. Italiana, 109, 13–17 (2017) [Google Scholar]
  23. T. Echterhof, T. Demus, H. Pfeifer et al., Investigation of palm kernel shells as a substitute for fossil carbons in a 140 t DC Electric Arc Furnace, in: Proc. 11th European Electric Steelmaking Conference & Expo, Venice, Italy, May 25-27, 2016 [Google Scholar]
  24. V. Colla, C. Pietrosanti, E. Malfa et al., Environment 4.0: how digitalization and machine learning can improve the environmental footprint of the steel production processes, Matériaux & Techniques, 108(5-6), 507 (2020). https://doi.org/10.1051/mattech/2021007 [Google Scholar]
  25. T. Meier, T. Hay, T. Echterhof et al., Process modeling and simulation of biochar usage in an electric arc furnace as a substitute for fossil coal, Steel Res. Int. 88(9), 1600458 (2017). https://doi.org/10.1002/srin.201600458 [CrossRef] [Google Scholar]
  26. T. Meier, T. Echterhof, H. Pfeifer, Investigating the use of biomass and oxygen in electric steelmaking by simulations based on a dynamic process model, in: Proc. 2nd ISIJ-VDEh-Jernkontoret Joint Symposium, Stockholm, Sweden, June 12-13, 2017 [Google Scholar]
  27. I. Matino, E. Alcamisi, V. Colla et al., Process modelling and simulation of electric arc furnace steelmaking to allow prognostic evaluations of process environmental and energy impacts, Matériaux & Techniques, 104(1), 104 (2016). http://dx.doi.org/10.1051/mattech/2016004 [CrossRef] [EDP Sciences] [Google Scholar]
  28. A. Petrucciani, A. Zaccara, I. Matino et al., Flowsheet model and simulation of produced slag in electric steelmaking to improve resource management and circular production, Chem. Eng. Trans. 96, 121–126 (2022). https://doi.org/10.3303/CET2296021 [Google Scholar]
  29. R. Robinson, L. Brabie, M. Pettersson et al., An empirical comparative study of renewable biochar and fossil carbon as carburizer in steelmaking, ISIJ Int. 62(12), 2522–2528 (2022). https://doi.org/10.2355/isijinternational.ISIJINT-2020-135 [CrossRef] [Google Scholar]
  30. M. Mayyas, R.K. Nekouei, V. Sahajwalla, Valorization of lignin biomass as a carbon feedstock in steel industry: iron oxide reduction, steel carburizing and slag foaming, J. Clean. Prod. 219, 971–980 (2019). https://doi.org/10.1016/j.jclepro.2019.02.114 [CrossRef] [Google Scholar]
  31. L. Kieush, J. Schenk, A. Koveria et al., Utilization of renewable carbon in electric arc furnace-based steel production: comparative evaluation of properties of conventional and non-conventional carbon-bearing sources, Metals 13(4), 722 (2023). https://doi.org/10.3390/met13040722 [CrossRef] [Google Scholar]
  32. S. Al Hosni, M. Domini, R. Vahidzadeh et al., Potential and environmental benefits of biochar utilization for coal/coke substitution in the steel industry, Energies 17(11), 2759 (2024) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.