Open Access
Review
Numéro |
Matériaux & Techniques
Volume 110, Numéro 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
|
|
---|---|---|
Numéro d'article | 403 | |
Nombre de pages | 22 | |
Section | Matériaux désordonnés : verres, vitrocéramiques… / Disordered matérials: Glasses, clays, vitroceramics… | |
DOI | https://doi.org/10.1051/mattech/2022041 | |
Publié en ligne | 5 octobre 2022 |
- A. Smekal, Zur Quantentheorie der Dispersion, Naturwissenschaften 11 , 873–875 (1923) [CrossRef] [Google Scholar]
- C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature 121 , 501–502 (1928) [CrossRef] [Google Scholar]
- Gr. Landsberg, L. Mandelstam, Über die Lichtzerstreuung in Kristallen, Zeitschrift für Physik 50 , 769–780 (1928) [CrossRef] [Google Scholar]
- P.F. McMillan, Structural studies of silicate glasses and melts – Applications and limitations of Raman spectroscopy, Am. Mineral. 69 , 622–644 (1984) [Google Scholar]
- D.R. Neuville, D. de Ligny, G.S. Henderson, Advances in Raman spectroscopy applied to Earth and material sciences, Rev. Mineral. Geochem. (Mineralogical Society of America) 78 , 509–541 (2014) [CrossRef] [Google Scholar]
- C. Le Losq, M.R. Cicconi, G.N. Greaves, et al., Silicate glasses, in: Springer handbook of glass, Springer, 2019b [Google Scholar]
- C. Le Losq, D.R. Neuville, R. Moretti, et al., Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism, Am. Mineral. 97 , 779–790 (2012) [CrossRef] [Google Scholar]
- F. Schiavi, N. Bolfan-Casanova, A.C. Withers, et al., Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron, Chem. Geol. 483 , 312–331 (2018) [CrossRef] [Google Scholar]
- V. Magnien, D.R. Neuville, L. Cormier, et al., Kinetics of iron redox reactions in silicate liquids: A high-temperature X-ray absorption and Raman spectroscopy study, J. Nucl. Mater. 352 , 190–195 (2006) [CrossRef] [Google Scholar]
- M. Roskosz, M.J. Toplis, D.R. Neuville, et al., Quantification of the kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role of oxygen diffusion, Am. Mineral. 93 , 1749–1759 (2008) [CrossRef] [Google Scholar]
- C. Le Losq, A.J. Berry, M.A. Kendrick, et al., Determination of the oxidation state of iron in Mid-Ocean Ridge basalt glasses by Raman spectroscopy, Am. Mineral. 104 , 1032–1042 (2019) [CrossRef] [Google Scholar]
- D. Di Genova, D. Morgavi, K.-U. Hess, et al., Approximate chemical analysis of volcanic glasses using Raman spectroscopy, J. Raman Spectrosc. 46 , 1235–1244 (2015) [CrossRef] [Google Scholar]
- C. Le Losq, Rampy: A Python library for processing spectroscopic (IR, Raman, XAS…) data, Zenodo, 2018 [Google Scholar]
- P.L. King, P.F. McMillan, G.M. Moore, Infrared spectroscopy of silicate glasses with application to natural systems, Infrared Spectrosc. Geochem. Explor. Geochem. Remote Sens. 33 , 93–133 (2004) [Google Scholar]
- A. Stolper, Water in silicate glasses: An infrared spectroscopic study, Contr. Mineral. Petrol. 81 , 1–17 (1982) [CrossRef] [Google Scholar]
- J.B. Lowenstern, B.W. Pitcher, Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy, Am. Mineral. 98 , 1660–1668 (2013) [CrossRef] [Google Scholar]
- A. Stuke, H. Behrens, B.C. Schmidt, et al., H2O speciation in float glass and soda lime silica glass, Chem. Geol. 229 , 64–77 (2006) [CrossRef] [Google Scholar]
- C. Le Losq, G.D. Cody, B.O. Mysen, Complex IR spectra of OH− groups in silicate glasses: Implications for the use of the 4500 cm−1 IR peak as a marker of OH− groups concentration, Am. Mineral. 100 , 945–950 (2015) [CrossRef] [Google Scholar]
- G.D. Cody, M. Ackerson, C. Beaumont, et al., Revisiting water speciation in hydrous alumino-silicate glasses: A discrepancy between solid-state 1H NMR and NIR spectroscopy in the determination of X-OH and H2O, Geochim. Cosmochim. Acta 285 , 150–174 (2020) [CrossRef] [Google Scholar]
- C. Le Losq, B.O. Mysen, G.D. Cody, Water solution mechanism in calcium aluminosilicate glasses and melts: insights from in and ex situ Raman and 29Si NMR spectroscopy, C. R. Geosci. 354 , 1–27 (2022) [Google Scholar]
- T. Uchino, T. Sakka, K. Hotta, et al., Attenuated total reflectance Fourier-transform infrared spectra of a hydrated sodium silicate glass, J. Am. Ceram. Soc. 72 , 2173–2175 (1989) [CrossRef] [Google Scholar]
- V.K. Leko, E.V. Meshcheryakova, H.K. Gusakova, et al., The effect of some factors on the viscosity of vitreous silica, Glass Ceram. 30 , 528–531 (1973) [CrossRef] [Google Scholar]
- V.K. Leko, N.J. Gusakova, E.V. Meshcheryakova, et al., The effect of impurity alkali oxides, hydroxyl groups, Al2O3, and Ga2O3 on the viscosity of vitreous silica, Soviet J. Glass Phys. Chem. 3 , 204–210 (1977) [Google Scholar]
- J. Deubener, R. Müller, H. Behrens, et al., Water and the glass transition temperature of silicate melts, J. Non-Cryst. Solids 330 , 268–273 (2003) [CrossRef] [Google Scholar]
- P. Del Gaudio, H. Behrens, J. Deubener, Viscosity and glass transition temperature of hydrous float glass, J. Non-Cryst. Solids 353 , 223–236 (2007) [CrossRef] [Google Scholar]
- V. Vercamer, Spectroscopic and Structural Properties of Iron in Silicate Glasses, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016 [Google Scholar]
- T. Volotinen Tarja, et al., Reflection loss correction method for accurate absorbance spectrum analysis of coloured glasses, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 60(4), 157–169 (2019) [CrossRef] [Google Scholar]
- D. De Ligny, D. Möncke, Colors in glasses, in: Springer handbook of glass, Springer, 2019, pp. 297–342 [CrossRef] [Google Scholar]
- R. Sève, Physique de la couleur, Masson, Paris, 1996 [Google Scholar]
- N. Capobianco, et al., The Grande Rose of the Reims Cathedral: an eight-century perspective on the colour management of medieval stained glass, Sci. Rep. 9(1), 1–10 (2019) [Google Scholar]
- M.O.J.Y. Hunault, et al., Thirteenth-century stained glass windows of the Sainte-Chapelle in Paris: an insight into medieval glazing work practices, J. Archaeol. Sci. Rep. 35 , 102753 (2021) [Google Scholar]
- H.E. Fischer, A.C. Barnes, P.S. Salmon, Neutron and X-ray diffraction studies of liquids and glasses, Rep. Progr. Phys. 69 , 233–299 (2006) [CrossRef] [Google Scholar]
- T.E. Faber, J.M. Ziman, A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys, Philos. Mag. 11(109), 153–173 (1965) [CrossRef] [Google Scholar]
- B.E. Warren, H. Krutter, O. Morningstar, Fourier analysis of X-ray patterns of vitreous SiO2 and B2O3*, J. Am. Ceram. Soc. 75 , 11–15 (1992) [CrossRef] [Google Scholar]
- J.W.E. Drewitt, S. Jahn, V. Cristiglio, et al., The structure of liquid calcium aluminates as investigated by neutron and high-energy X-ray diffraction in combination with molecular dynamics simulation methods, J. Phys.: Condens. Matter 24 , 099501 (2012) [CrossRef] [Google Scholar]
- L. Hennet, J.W.E. Drewitt, D.R. Neuville, et al., Neutron diffraction of calcium aluminosilicate glasses and melts, J. Non-Cryst. Solids 451 , 89–93 (2016) [CrossRef] [Google Scholar]
- J.W.E. Drewitt, L. Hennet, A. Zeidler, et al., Structural transformations on vitrification in the fragile glass-forming system CaAl2O4 , Phys. Rev. Lett. 109 , 235501 (2012) [CrossRef] [Google Scholar]
- L. Hennet, D. Thiaudière, C. Landron, et al., Melting behavior of levitated Y2O3 , Appl. Phys. Lett. 83 , 3305–3307 (2003) [CrossRef] [Google Scholar]
- L. Cormier, D. Ghaleb, D.R. Neuville, et al., Chemical dependence of network topology of calcium aluminosilicate glasses: A computer simulation study, J. Non-Cryst. Solids 332 , 255–270 (2003) [CrossRef] [Google Scholar]
- S. Ispas, T. Charpentier, F. Mauri, et al., Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data, Solid State Sci. 12 , 183–192 (2010) [CrossRef] [Google Scholar]
- Y. Wang, T. Sakamaki, L.B. Skinner, et al., Atomistic insight into viscosity and density of silicate melts under pressure, Nat. Commun. 5 , 3241 (2014) [CrossRef] [Google Scholar]
- M. Bauchy, Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential, J. Chem. Phys. 141 , 024507 (2014) [CrossRef] [Google Scholar]
- D.C. Rapaport, The art of molecular dynamics simulation, 2nd ed, Cambridge University Press, Cambridge, UK, 2004 [CrossRef] [Google Scholar]
- J.F. Stebbins, X. Xue, NMR spectroscopy of inorganic Earth materials, Rev. Mineral. Geochem. 78 , 605–653 (2014) [CrossRef] [Google Scholar]
- H. Maekawa, T. Maekawa, K. Kawamura, et al., The structural groups of alkali silicate glasses determined from 29Si MAS-NMR, J. Non-Cryst. Solids 127 , 53–64 (1991) [CrossRef] [Google Scholar]
- C. Le Losq, B.O. Mysen, G.D. Cody, Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies, Progr. Earth Planet. Sci. 2 , (2015) [CrossRef] [Google Scholar]
- M.J. Duer, Introduction to solid-state NMR spectroscopy, Broché, 2004 [Google Scholar]
- D. Massiot, F. Fayon, V. Montouillout, et al., Structure and dynamics of oxide melts and glasses: A view from multinuclear and high temperature NMR, J. Non-Cryst. Solids 354 , 249–254 (2008) [CrossRef] [Google Scholar]
- B. Gault, M.P. Moody, J.M. Cairney, et al., Atom probe microscopy, Springer-Verlag, New York, 2012 [CrossRef] [Google Scholar]
- D.J. Larson, T.J. Prosa, R.M. Ulfig, et al., Local electrode atom probe tomography: A user’s guide, Springer-Verlag, New York, 2013 [CrossRef] [Google Scholar]
- W. Lefebvre-Ulrikson, F. Vurpillot, X. Sauvage, Atom probe tomography: Put theory into practice, Elsevier, 2016 [Google Scholar]
- W. Blanc, I. Martin, H. Francois-Saint-Cyr, et al., Compositional changes at the early stages of nanoparticles growth in glasses, J. Phys. Chem. C 123 , 29008–29014 (2019) [CrossRef] [Google Scholar]
- H. Francois-Saint-Cyr, M. Kang, I. Martin, et al., Three-dimensional microstructural characterization of novel chalcogenide nanocomposites for gradient refractive index applications, Microsc. Microanal. 25 , 2500–2501 (2019) [CrossRef] [Google Scholar]
- R.L. Smith, G.E. Sandland, An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness, Proc. Inst. Mech. Eng. 102 , 623–641 (1922) [CrossRef] [Google Scholar]
- M. Yamane, J.D. Mackenzie, Vicker’s hardness of glass, J. Non-Cryst. Solids 15 , 153–164 (1974) [CrossRef] [Google Scholar]
- M. Tiegel, R. Hosseinabadi, S. Kuhn, et al., Young’s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses, Ceram. Int. 41 , 7267–7275 (2015) [CrossRef] [Google Scholar]
- M. Jensen, M.M. Smedskjaer, M. Estrup, et al., Hardness of basaltic glass-ceramics, Glass Technol. – Eur. J. Glass Sci. Technol. Part A 50 , 189–195 (2009) [Google Scholar]
- A. Mohajerani, J.W. Zwanziger, Mixed alkali effect on Vickers hardness and cracking, J. Non-Cryst. Solids 358 , 1474–1479 (2012) [CrossRef] [Google Scholar]
- H. Doweidar, Density-structure correlations in silicate glasses, J. Non-Cryst. Solids 249 , 194–200 (1999) [CrossRef] [Google Scholar]
- H. Doweidar, Modelling of density structure relations in silicate glasses containing Al2O3 , Phys. Chem. Glass. 42 , 42–48 (2001) [Google Scholar]
- D.R. Neuville, P. Richet, Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets, Geochim. Cosmochim. Acta 55 , 1011–1019 (1991) [CrossRef] [Google Scholar]
- J.L. Haas, J.R. Fisher, Simultaneous evaluation and correlation of thermodynamic data, Am. J. Sci. 276 , 525–545 (1976) [CrossRef] [Google Scholar]
- D.R. Neuville, C. Le Losq, Link between medium and long-range order and macroscopic properties of silicate glasses and melts, Geol. Melt. 87 , 105–162 (2022) [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.