Open Access
Review
Numéro |
Matériaux & Techniques
Volume 110, Numéro 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
|
|
---|---|---|
Numéro d'article | 402 | |
Nombre de pages | 17 | |
Section | Vieillissement et durabilité / Ageing and durability | |
DOI | https://doi.org/10.1051/mattech/2022024 | |
Publié en ligne | 20 septembre 2022 |
- Y. Aujollet, P. Douard, P.-E. Girardot, et al., Les filières de recyclage de déchets en France métropolitaine, 2020 [Google Scholar]
- S. Schumacher, C. Martin, Y. Linard, et al., Key phenomena governing HLW glass behavior in the French Deep Geological Disposal, MRS Proc. 1744 , 127–138 (2015) [CrossRef] [Google Scholar]
- S. Gin, X. Beaudoux, F. Angéli, et al., Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, J. Non-Cryst. Solids 358 ( 18-19 ), 2559–2570 (2012) [CrossRef] [Google Scholar]
- S. Gin, J.-M. Delaye, F. Angeli, et al., Aqueous alteration of silicate glass: state of knowledge and perspectives, NPJ Mater. Degrad. 5 ( 1 ), 42 (2021) [CrossRef] [Google Scholar]
- I. Ribet, N. Godon, Altération par l’eau des verres borosilicatés -- Exemple des verres nucléaires, Techniques de l’ingénieur Matériaux: résistance à la corrosion et au vieillissement, 25 (2014) [Google Scholar]
- B. Grambow, Nuclear waste glasses – how durable? Elements 2 ( 6 ), 357–364 (2006) [CrossRef] [Google Scholar]
- B.C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses, J. Non-Cryst. Solids 179 , 300–308 (1994) [CrossRef] [Google Scholar]
- R.H. Doremus, Interdiffusion of hydrogen and alkali ions in a glass surface, J. Non-Cryst. Solids 19 , 137–144 (1975) [CrossRef] [Google Scholar]
- H. Scholze, Chemical durability of glasses, J. Non-Cryst. Solids 52 , 91–103 (1982) [CrossRef] [Google Scholar]
- B.M.J. Smets, On the mechanism of the corrosion of glass by water, Philips Tech. Rev. 42 ( 2 ), 59–64 (1985) [Google Scholar]
- J. Barton, C. Guillemet, Le verre, science et technologie, EDP Sciences, Les Ulis, 2005 [Google Scholar]
- B.P. McGrail, J.P. Icenhower, D.K. Shuh, et al., The structure of Na2O–Al2O3–SiO2 glass: impact on sodium ion exchange in H2O and D2O, J. Non-Cryst. Solids 296 ( 1-2 ), 10–26 (2001) [CrossRef] [Google Scholar]
- Y. Xiao, A.C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H30’) catalysis, Geochim. Cosmochim. Acta 58 ( 24 ), 5379–5400 (1994) [CrossRef] [Google Scholar]
- Y. Xiao, A.C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH catalysis, Geochim. Cosmochim. Acta 60(13), 2283–2295 (1996) [CrossRef] [Google Scholar]
- W.H. Casey, H.R. Westrich, G.W. Arnold, Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH=2, 3, and 12, Geochim. Cosmochim. Acta 52(12), 2795–2807 (1988) [CrossRef] [Google Scholar]
- O. Deruelle, O. Spalla, P. Barboux, et al., Growth and ripening of porous layers in water altered glasses, J. Non-Cryst. Solids 261(1–3), 237–251 (2000) [CrossRef] [Google Scholar]
- B.C. Bunker, D.R. Tallant, T.J. Headley, et al., The structure of leached sodium borosilicate glass, Phys. Chem. Glass. 29, 106–120 (1988) [Google Scholar]
- S. Gin, P. Jollivet, M. Fournier, et al., Origin and consequences of silicate glass passivation by surface layers, Nat. Commun. 6(1), 6360 (2015) [Google Scholar]
- F. Angeli, M. Gaillard, P. Jollivet, et al., Influence of glass composition and alteration solution on leached silicate glass structure: a solid-state NMR investigation, Geochim. Cosmochim. Acta 70(10), 2577–2590 (2006) [CrossRef] [Google Scholar]
- F. Angeli, P. Jollivet, T. Charpentier, et al., Structure and chemical durability of lead crystal glass, Environ. Sci. Technol. 50(21), 11549–11558 (2016) [CrossRef] [Google Scholar]
- C. Cailleteau, F. Angeli, F. Devreux, et al., Insight into silicate-glass corrosion mechanisms, Nat. Mater. 7 ( 12 ), 978–983 (2008) [CrossRef] [Google Scholar]
- S. Gin, A.H. Mir, A. Jan, et al., A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion, J. Phys. Chem. C 124 ( 9 ), 5132–5144 (2020) [CrossRef] [Google Scholar]
- G. Perera, R.H. Doremus, Dissolution rates of commercial soda-lime and pyrex borosilicate glasses: influence of solution pH, J. Am. Ceram. Soc. 74 ( 7 ), 1554–1558 (1991) [CrossRef] [Google Scholar]
- L. Gentaz, T. Lombardo, C. Loisel, et al., Early stage of weathering of medieval-like potash–lime model glass: evaluation of key factors, Environ. Sci. Pollut. Res. 18 ( 2 ), 291–300 (2011) [CrossRef] [Google Scholar]
- A. Verney-Carron, Étude d’analogues archéologiques pour la validation des modèles de comportement à long terme des verres nucléaires, 2009 [Google Scholar]
- Z. Boksay, G. Bouquet, S. Dobos, The kinetics of the formation of leached layers on glass surfaces, Phys. Chem. Glass. 9 , 69–71 (1968) [Google Scholar]
- C. Guy, J. Schott, Multisite surface reaction versus transport control during the hydrolysis of a complex oxide, Chem. Geol. 78 ( 3-4 ), 181–204 (1989) [CrossRef] [Google Scholar]
- P. Aagaard, H.C. Hegelson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations, Am. J. Sci. 282 , 237–285 (1982) [CrossRef] [Google Scholar]
- N. Godon, Contribution CEA au référentiel de comportement des déchets vitrifiés, 2012 [Google Scholar]
- S. Gin, P. Frugier, P. Jollivet, et al., New insight into the residual rate of borosilicate glasses: effect of S/V and glass composition, Int. J. Appl. Glass Sci. 4 ( 4 ), 371–382 (2013) [CrossRef] [Google Scholar]
- F. Angeli, O. Villain, S. Schuller, et al., Effect of temperature and thermal history on borosilicate glass structure, Phys. Rev. B 85 ( 5 ), 054110 (2012) [CrossRef] [Google Scholar]
- P. Jollivet, L. Galoisy, G. Calas, et al., Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: evidence of a double-layered gel, J. Non-Cryst. Solids 503-504 , 268–278 (2019) [CrossRef] [Google Scholar]
- A. Perez, D. Daval, M. Fournier, et al., Comparing the reactivity of glasses with their crystalline equivalents: the case study of plagioclase feldspar, Geochim. Cosmochim. Acta 254 , 122–141 (2019) [CrossRef] [Google Scholar]
- M. Arab, C. Cailleteau, F. Angeli, et al., Aqueous alteration of five-oxide silicate glasses: experimental approach and Monte Carlo modeling, J. Non-Cryst. Solids 354 ( 2-9 ), 155–161 (2008) [CrossRef] [Google Scholar]
- B. Thien, Développement des bases théoriques nécessaires à la modélisation de la vitesse résiduelle d’altération en milieu aqueux des verres nucléaires AVM, 2010 [Google Scholar]
- F. Angeli, T. Charpentier, E. Molières, et al., Influence of lanthanum on borosilicate glass structure: a multinuclear MAS and MQMAS NMR investigation, J. Non-Cryst. Solids 376 , 189–198 (2013) [CrossRef] [Google Scholar]
- E. Molières, F. Angeli, P. Jollivet, et al., Chemical durability of lanthanum-enriched borosilicate glass, Int. J. Appl. Glass Sci. 4 ( 4 ), 383–394 (2013) [CrossRef] [Google Scholar]
- E. Nicoleau, F. Angeli, S. Schuller, et al., Rare-earth silicate crystallization in borosilicate glasses: effect on structural and chemical durability properties, J. Non-Cryst. Solids 438 , 37–48 (2016) [CrossRef] [Google Scholar]
- E. Pèlegrin, G. Calas, P. Ildefonse, et al., Structural evolution of glass surface during alteration: application to nuclear waste glasses, J. Non-Cryst. Solids 356 ( 44-49 ), 2497–2508 (2010) [CrossRef] [Google Scholar]
- S. Feller, G. Lodden, A. Riley, et al., A multispectroscopic structural study of lead silicate glasses over an extended range of compositions, J. Non-Cryst. Solids 356 ( 6-8 ), 304–313 (2010) [CrossRef] [Google Scholar]
- R.A. Rahimi, S.K. Sadrnezhaad, Effects of ion-exchange and hydrolysis mechanisms on lead silicate glass corrosion, Corrosion 68 ( 9 ), 793–800 (2012) [CrossRef] [Google Scholar]
- M. Mizuno, M. Takahashi, T. Takaishi, et al., Leaching of lead and connectivity of plumbate networks in lead silicate glasses, J. Am. Ceram. Soc. 88 ( 10 ), 2908–2912 (2005) [CrossRef] [Google Scholar]
- C. Liao, Y. Tang, C. Liu, et al., Double-barrier mechanism for chromium immobilization: a quantitative study of crystallization and leachability, J. Hazard. Mater. 311 , 246–253 (2016) [CrossRef] [Google Scholar]
- J. Sterpenich, Altération des vitraux médievaux. Contribution à l’étude du comportement à long terme des verres de confinement, 1998 [Google Scholar]
- F. Alloteau, Contribution à la compréhension des mécanismes de l’altération atmosphérique des verres et étude d’un traitement de protection à base de sels de zinc, 2017 [Google Scholar]
- S. Narayanasamy, P. Jollivet, N. Godon, et al., Influence of composition of nuclear waste glasses on vapor phase hydration, J. Nucl. Mater. 525 , 53–71 (2019) [CrossRef] [Google Scholar]
- T.A. Abrajano, J.K. Bates, J.J. Mazer, Aqueous corrosion of natural and nuclear waste glasses. II. Mechanisms of vapor hydration of nuclear waste glasses, J. Non-Cryst. Solids 108 ( 3 ), 269–288 (1989) [CrossRef] [Google Scholar]
- O. Majérus, Glass alteration in atmospheric conditions: crossing perspectives from cultural heritage, glass industry, and nuclear waste management, Mater. Degrad. 16 , (2020) [Google Scholar]
- S. Fearn, D.S. McPhail, V. Oakley, Room temperature corrosion of museum glass: an investigation using low-energy SIMS, Appl. Surf. Sci. 231-232 , 510–514 (2004) [CrossRef] [Google Scholar]
- M. Verità, R. Falcone, G. Sommariva, et al., Weathering of the inner surface of soda–lime–silica glass containers exposed to the atmosphere, Glass Technol. - Eur. J. Glass Sci. Technol. Part A 50 ( 1 ), 65–70 (2009) [Google Scholar]
- L. Robinet, C. Coupry, K. Eremin, et al., The use of Raman spectrometry to predict the stability of historic glasses, J. Raman Spectrosc. 37 ( 7 ), 789–797 (2006) [CrossRef] [Google Scholar]
- T.A. Abrajano, J.K. Bates, C.D. Byers, Aqueous corrosion of natural and nuclear waste glasses. I. Comparative rates of hydration in liquid and vapor environments at elevated temperatures, J. Non-Cryst. Solids 84 ( 1-3 ), 251–257 (1986) [CrossRef] [Google Scholar]
- M. Emami, S. Nekouei, H. Ahmadi, et al., Iridescence in ancient glass: a morphological and chemical investigation, Int. J. Appl. Glass Sci. 7 ( 1 ), 59–68 (2016) [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.