Open Access
Review
Issue |
Matériaux & Techniques
Volume 110, Number 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
|
|
---|---|---|
Article Number | 402 | |
Number of page(s) | 17 | |
Section | Vieillissement et durabilité / Ageing and durability | |
DOI | https://doi.org/10.1051/mattech/2022024 | |
Published online | 20 September 2022 |
- Y. Aujollet, P. Douard, P.-E. Girardot, et al., Les filières de recyclage de déchets en France métropolitaine, 2020 [Google Scholar]
- S. Schumacher, C. Martin, Y. Linard, et al., Key phenomena governing HLW glass behavior in the French Deep Geological Disposal, MRS Proc. 1744 , 127–138 (2015) [CrossRef] [Google Scholar]
- S. Gin, X. Beaudoux, F. Angéli, et al., Effect of composition on the short-term and long-term dissolution rates of ten borosilicate glasses of increasing complexity from 3 to 30 oxides, J. Non-Cryst. Solids 358 ( 18-19 ), 2559–2570 (2012) [CrossRef] [Google Scholar]
- S. Gin, J.-M. Delaye, F. Angeli, et al., Aqueous alteration of silicate glass: state of knowledge and perspectives, NPJ Mater. Degrad. 5 ( 1 ), 42 (2021) [CrossRef] [Google Scholar]
- I. Ribet, N. Godon, Altération par l’eau des verres borosilicatés -- Exemple des verres nucléaires, Techniques de l’ingénieur Matériaux: résistance à la corrosion et au vieillissement, 25 (2014) [Google Scholar]
- B. Grambow, Nuclear waste glasses – how durable? Elements 2 ( 6 ), 357–364 (2006) [CrossRef] [Google Scholar]
- B.C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses, J. Non-Cryst. Solids 179 , 300–308 (1994) [CrossRef] [Google Scholar]
- R.H. Doremus, Interdiffusion of hydrogen and alkali ions in a glass surface, J. Non-Cryst. Solids 19 , 137–144 (1975) [CrossRef] [Google Scholar]
- H. Scholze, Chemical durability of glasses, J. Non-Cryst. Solids 52 , 91–103 (1982) [CrossRef] [Google Scholar]
- B.M.J. Smets, On the mechanism of the corrosion of glass by water, Philips Tech. Rev. 42 ( 2 ), 59–64 (1985) [Google Scholar]
- J. Barton, C. Guillemet, Le verre, science et technologie, EDP Sciences, Les Ulis, 2005 [Google Scholar]
- B.P. McGrail, J.P. Icenhower, D.K. Shuh, et al., The structure of Na2O–Al2O3–SiO2 glass: impact on sodium ion exchange in H2O and D2O, J. Non-Cryst. Solids 296 ( 1-2 ), 10–26 (2001) [CrossRef] [Google Scholar]
- Y. Xiao, A.C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H30’) catalysis, Geochim. Cosmochim. Acta 58 ( 24 ), 5379–5400 (1994) [CrossRef] [Google Scholar]
- Y. Xiao, A.C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH catalysis, Geochim. Cosmochim. Acta 60(13), 2283–2295 (1996) [CrossRef] [Google Scholar]
- W.H. Casey, H.R. Westrich, G.W. Arnold, Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH=2, 3, and 12, Geochim. Cosmochim. Acta 52(12), 2795–2807 (1988) [CrossRef] [Google Scholar]
- O. Deruelle, O. Spalla, P. Barboux, et al., Growth and ripening of porous layers in water altered glasses, J. Non-Cryst. Solids 261(1–3), 237–251 (2000) [CrossRef] [Google Scholar]
- B.C. Bunker, D.R. Tallant, T.J. Headley, et al., The structure of leached sodium borosilicate glass, Phys. Chem. Glass. 29, 106–120 (1988) [Google Scholar]
- S. Gin, P. Jollivet, M. Fournier, et al., Origin and consequences of silicate glass passivation by surface layers, Nat. Commun. 6(1), 6360 (2015) [Google Scholar]
- F. Angeli, M. Gaillard, P. Jollivet, et al., Influence of glass composition and alteration solution on leached silicate glass structure: a solid-state NMR investigation, Geochim. Cosmochim. Acta 70(10), 2577–2590 (2006) [CrossRef] [Google Scholar]
- F. Angeli, P. Jollivet, T. Charpentier, et al., Structure and chemical durability of lead crystal glass, Environ. Sci. Technol. 50(21), 11549–11558 (2016) [CrossRef] [Google Scholar]
- C. Cailleteau, F. Angeli, F. Devreux, et al., Insight into silicate-glass corrosion mechanisms, Nat. Mater. 7 ( 12 ), 978–983 (2008) [CrossRef] [Google Scholar]
- S. Gin, A.H. Mir, A. Jan, et al., A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion, J. Phys. Chem. C 124 ( 9 ), 5132–5144 (2020) [CrossRef] [Google Scholar]
- G. Perera, R.H. Doremus, Dissolution rates of commercial soda-lime and pyrex borosilicate glasses: influence of solution pH, J. Am. Ceram. Soc. 74 ( 7 ), 1554–1558 (1991) [CrossRef] [Google Scholar]
- L. Gentaz, T. Lombardo, C. Loisel, et al., Early stage of weathering of medieval-like potash–lime model glass: evaluation of key factors, Environ. Sci. Pollut. Res. 18 ( 2 ), 291–300 (2011) [CrossRef] [Google Scholar]
- A. Verney-Carron, Étude d’analogues archéologiques pour la validation des modèles de comportement à long terme des verres nucléaires, 2009 [Google Scholar]
- Z. Boksay, G. Bouquet, S. Dobos, The kinetics of the formation of leached layers on glass surfaces, Phys. Chem. Glass. 9 , 69–71 (1968) [Google Scholar]
- C. Guy, J. Schott, Multisite surface reaction versus transport control during the hydrolysis of a complex oxide, Chem. Geol. 78 ( 3-4 ), 181–204 (1989) [CrossRef] [Google Scholar]
- P. Aagaard, H.C. Hegelson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations, Am. J. Sci. 282 , 237–285 (1982) [CrossRef] [Google Scholar]
- N. Godon, Contribution CEA au référentiel de comportement des déchets vitrifiés, 2012 [Google Scholar]
- S. Gin, P. Frugier, P. Jollivet, et al., New insight into the residual rate of borosilicate glasses: effect of S/V and glass composition, Int. J. Appl. Glass Sci. 4 ( 4 ), 371–382 (2013) [CrossRef] [Google Scholar]
- F. Angeli, O. Villain, S. Schuller, et al., Effect of temperature and thermal history on borosilicate glass structure, Phys. Rev. B 85 ( 5 ), 054110 (2012) [CrossRef] [Google Scholar]
- P. Jollivet, L. Galoisy, G. Calas, et al., Zirconium local environment in simplified nuclear glasses altered in basic, neutral or acidic conditions: evidence of a double-layered gel, J. Non-Cryst. Solids 503-504 , 268–278 (2019) [CrossRef] [Google Scholar]
- A. Perez, D. Daval, M. Fournier, et al., Comparing the reactivity of glasses with their crystalline equivalents: the case study of plagioclase feldspar, Geochim. Cosmochim. Acta 254 , 122–141 (2019) [CrossRef] [Google Scholar]
- M. Arab, C. Cailleteau, F. Angeli, et al., Aqueous alteration of five-oxide silicate glasses: experimental approach and Monte Carlo modeling, J. Non-Cryst. Solids 354 ( 2-9 ), 155–161 (2008) [CrossRef] [Google Scholar]
- B. Thien, Développement des bases théoriques nécessaires à la modélisation de la vitesse résiduelle d’altération en milieu aqueux des verres nucléaires AVM, 2010 [Google Scholar]
- F. Angeli, T. Charpentier, E. Molières, et al., Influence of lanthanum on borosilicate glass structure: a multinuclear MAS and MQMAS NMR investigation, J. Non-Cryst. Solids 376 , 189–198 (2013) [CrossRef] [Google Scholar]
- E. Molières, F. Angeli, P. Jollivet, et al., Chemical durability of lanthanum-enriched borosilicate glass, Int. J. Appl. Glass Sci. 4 ( 4 ), 383–394 (2013) [CrossRef] [Google Scholar]
- E. Nicoleau, F. Angeli, S. Schuller, et al., Rare-earth silicate crystallization in borosilicate glasses: effect on structural and chemical durability properties, J. Non-Cryst. Solids 438 , 37–48 (2016) [CrossRef] [Google Scholar]
- E. Pèlegrin, G. Calas, P. Ildefonse, et al., Structural evolution of glass surface during alteration: application to nuclear waste glasses, J. Non-Cryst. Solids 356 ( 44-49 ), 2497–2508 (2010) [CrossRef] [Google Scholar]
- S. Feller, G. Lodden, A. Riley, et al., A multispectroscopic structural study of lead silicate glasses over an extended range of compositions, J. Non-Cryst. Solids 356 ( 6-8 ), 304–313 (2010) [CrossRef] [Google Scholar]
- R.A. Rahimi, S.K. Sadrnezhaad, Effects of ion-exchange and hydrolysis mechanisms on lead silicate glass corrosion, Corrosion 68 ( 9 ), 793–800 (2012) [CrossRef] [Google Scholar]
- M. Mizuno, M. Takahashi, T. Takaishi, et al., Leaching of lead and connectivity of plumbate networks in lead silicate glasses, J. Am. Ceram. Soc. 88 ( 10 ), 2908–2912 (2005) [CrossRef] [Google Scholar]
- C. Liao, Y. Tang, C. Liu, et al., Double-barrier mechanism for chromium immobilization: a quantitative study of crystallization and leachability, J. Hazard. Mater. 311 , 246–253 (2016) [CrossRef] [Google Scholar]
- J. Sterpenich, Altération des vitraux médievaux. Contribution à l’étude du comportement à long terme des verres de confinement, 1998 [Google Scholar]
- F. Alloteau, Contribution à la compréhension des mécanismes de l’altération atmosphérique des verres et étude d’un traitement de protection à base de sels de zinc, 2017 [Google Scholar]
- S. Narayanasamy, P. Jollivet, N. Godon, et al., Influence of composition of nuclear waste glasses on vapor phase hydration, J. Nucl. Mater. 525 , 53–71 (2019) [CrossRef] [Google Scholar]
- T.A. Abrajano, J.K. Bates, J.J. Mazer, Aqueous corrosion of natural and nuclear waste glasses. II. Mechanisms of vapor hydration of nuclear waste glasses, J. Non-Cryst. Solids 108 ( 3 ), 269–288 (1989) [CrossRef] [Google Scholar]
- O. Majérus, Glass alteration in atmospheric conditions: crossing perspectives from cultural heritage, glass industry, and nuclear waste management, Mater. Degrad. 16 , (2020) [Google Scholar]
- S. Fearn, D.S. McPhail, V. Oakley, Room temperature corrosion of museum glass: an investigation using low-energy SIMS, Appl. Surf. Sci. 231-232 , 510–514 (2004) [CrossRef] [Google Scholar]
- M. Verità, R. Falcone, G. Sommariva, et al., Weathering of the inner surface of soda–lime–silica glass containers exposed to the atmosphere, Glass Technol. - Eur. J. Glass Sci. Technol. Part A 50 ( 1 ), 65–70 (2009) [Google Scholar]
- L. Robinet, C. Coupry, K. Eremin, et al., The use of Raman spectrometry to predict the stability of historic glasses, J. Raman Spectrosc. 37 ( 7 ), 789–797 (2006) [CrossRef] [Google Scholar]
- T.A. Abrajano, J.K. Bates, C.D. Byers, Aqueous corrosion of natural and nuclear waste glasses. I. Comparative rates of hydration in liquid and vapor environments at elevated temperatures, J. Non-Cryst. Solids 84 ( 1-3 ), 251–257 (1986) [CrossRef] [Google Scholar]
- M. Emami, S. Nekouei, H. Ahmadi, et al., Iridescence in ancient glass: a morphological and chemical investigation, Int. J. Appl. Glass Sci. 7 ( 1 ), 59–68 (2016) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.