Matériaux & Techniques
Volume 110, Number 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
Article Number 403
Number of page(s) 22
Section Matériaux désordonnés : verres, vitrocéramiques… / Disordered matérials: Glasses, clays, vitroceramics…
Published online 05 October 2022
  1. A. Smekal, Zur Quantentheorie der Dispersion, Naturwissenschaften 11 , 873–875 (1923) [CrossRef] [Google Scholar]
  2. C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature 121 , 501–502 (1928) [CrossRef] [Google Scholar]
  3. Gr. Landsberg, L. Mandelstam, Über die Lichtzerstreuung in Kristallen, Zeitschrift für Physik 50 , 769–780 (1928) [CrossRef] [Google Scholar]
  4. P.F. McMillan, Structural studies of silicate glasses and melts – Applications and limitations of Raman spectroscopy, Am. Mineral. 69 , 622–644 (1984) [Google Scholar]
  5. D.R. Neuville, D. de Ligny, G.S. Henderson, Advances in Raman spectroscopy applied to Earth and material sciences, Rev. Mineral. Geochem. (Mineralogical Society of America) 78 , 509–541 (2014) [CrossRef] [Google Scholar]
  6. C. Le Losq, M.R. Cicconi, G.N. Greaves, et al., Silicate glasses, in: Springer handbook of glass, Springer, 2019b [Google Scholar]
  7. C. Le Losq, D.R. Neuville, R. Moretti, et al., Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism, Am. Mineral. 97 , 779–790 (2012) [CrossRef] [Google Scholar]
  8. F. Schiavi, N. Bolfan-Casanova, A.C. Withers, et al., Water quantification in silicate glasses by Raman spectroscopy: Correcting for the effects of confocality, density and ferric iron, Chem. Geol. 483 , 312–331 (2018) [CrossRef] [Google Scholar]
  9. V. Magnien, D.R. Neuville, L. Cormier, et al., Kinetics of iron redox reactions in silicate liquids: A high-temperature X-ray absorption and Raman spectroscopy study, J. Nucl. Mater. 352 , 190–195 (2006) [CrossRef] [Google Scholar]
  10. M. Roskosz, M.J. Toplis, D.R. Neuville, et al., Quantification of the kinetics of iron oxidation in silicate melts using Raman spectroscopy and assessment of the role of oxygen diffusion, Am. Mineral. 93 , 1749–1759 (2008) [CrossRef] [Google Scholar]
  11. C. Le Losq, A.J. Berry, M.A. Kendrick, et al., Determination of the oxidation state of iron in Mid-Ocean Ridge basalt glasses by Raman spectroscopy, Am. Mineral. 104 , 1032–1042 (2019) [CrossRef] [Google Scholar]
  12. D. Di Genova, D. Morgavi, K.-U. Hess, et al., Approximate chemical analysis of volcanic glasses using Raman spectroscopy, J. Raman Spectrosc. 46 , 1235–1244 (2015) [CrossRef] [Google Scholar]
  13. C. Le Losq, Rampy: A Python library for processing spectroscopic (IR, Raman, XAS…) data, Zenodo, 2018 [Google Scholar]
  14. P.L. King, P.F. McMillan, G.M. Moore, Infrared spectroscopy of silicate glasses with application to natural systems, Infrared Spectrosc. Geochem. Explor. Geochem. Remote Sens. 33 , 93–133 (2004) [Google Scholar]
  15. A. Stolper, Water in silicate glasses: An infrared spectroscopic study, Contr. Mineral. Petrol. 81 , 1–17 (1982) [CrossRef] [Google Scholar]
  16. J.B. Lowenstern, B.W. Pitcher, Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy, Am. Mineral. 98 , 1660–1668 (2013) [CrossRef] [Google Scholar]
  17. A. Stuke, H. Behrens, B.C. Schmidt, et al., H2O speciation in float glass and soda lime silica glass, Chem. Geol. 229 , 64–77 (2006) [CrossRef] [Google Scholar]
  18. C. Le Losq, G.D. Cody, B.O. Mysen, Complex IR spectra of OH groups in silicate glasses: Implications for the use of the 4500 cm−1 IR peak as a marker of OH groups concentration, Am. Mineral. 100 , 945–950 (2015) [CrossRef] [Google Scholar]
  19. G.D. Cody, M. Ackerson, C. Beaumont, et al., Revisiting water speciation in hydrous alumino-silicate glasses: A discrepancy between solid-state 1H NMR and NIR spectroscopy in the determination of X-OH and H2O, Geochim. Cosmochim. Acta 285 , 150–174 (2020) [CrossRef] [Google Scholar]
  20. C. Le Losq, B.O. Mysen, G.D. Cody, Water solution mechanism in calcium aluminosilicate glasses and melts: insights from in and ex situ Raman and 29Si NMR spectroscopy, C. R. Geosci. 354 , 1–27 (2022) [Google Scholar]
  21. T. Uchino, T. Sakka, K. Hotta, et al., Attenuated total reflectance Fourier-transform infrared spectra of a hydrated sodium silicate glass, J. Am. Ceram. Soc. 72 , 2173–2175 (1989) [CrossRef] [Google Scholar]
  22. V.K. Leko, E.V. Meshcheryakova, H.K. Gusakova, et al., The effect of some factors on the viscosity of vitreous silica, Glass Ceram. 30 , 528–531 (1973) [CrossRef] [Google Scholar]
  23. V.K. Leko, N.J. Gusakova, E.V. Meshcheryakova, et al., The effect of impurity alkali oxides, hydroxyl groups, Al2O3, and Ga2O3 on the viscosity of vitreous silica, Soviet J. Glass Phys. Chem. 3 , 204–210 (1977) [Google Scholar]
  24. J. Deubener, R. Müller, H. Behrens, et al., Water and the glass transition temperature of silicate melts, J. Non-Cryst. Solids 330 , 268–273 (2003) [CrossRef] [Google Scholar]
  25. P. Del Gaudio, H. Behrens, J. Deubener, Viscosity and glass transition temperature of hydrous float glass, J. Non-Cryst. Solids 353 , 223–236 (2007) [CrossRef] [Google Scholar]
  26. V. Vercamer, Spectroscopic and Structural Properties of Iron in Silicate Glasses, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI, 2016 [Google Scholar]
  27. T. Volotinen Tarja, et al., Reflection loss correction method for accurate absorbance spectrum analysis of coloured glasses, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 60(4), 157–169 (2019) [CrossRef] [Google Scholar]
  28. D. De Ligny, D. Möncke, Colors in glasses, in: Springer handbook of glass, Springer, 2019, pp. 297–342 [CrossRef] [Google Scholar]
  29. R. Sève, Physique de la couleur, Masson, Paris, 1996 [Google Scholar]
  30. N. Capobianco, et al., The Grande Rose of the Reims Cathedral: an eight-century perspective on the colour management of medieval stained glass, Sci. Rep. 9(1), 1–10 (2019) [Google Scholar]
  31. M.O.J.Y. Hunault, et al., Thirteenth-century stained glass windows of the Sainte-Chapelle in Paris: an insight into medieval glazing work practices, J. Archaeol. Sci. Rep. 35 , 102753 (2021) [Google Scholar]
  32. H.E. Fischer, A.C. Barnes, P.S. Salmon, Neutron and X-ray diffraction studies of liquids and glasses, Rep. Progr. Phys. 69 , 233–299 (2006) [CrossRef] [Google Scholar]
  33. T.E. Faber, J.M. Ziman, A theory of the electrical properties of liquid metals: III. The resistivity of binary alloys, Philos. Mag. 11(109), 153–173 (1965) [CrossRef] [Google Scholar]
  34. B.E. Warren, H. Krutter, O. Morningstar, Fourier analysis of X-ray patterns of vitreous SiO2 and B2O3*, J. Am. Ceram. Soc. 75 , 11–15 (1992) [CrossRef] [Google Scholar]
  35. J.W.E. Drewitt, S. Jahn, V. Cristiglio, et al., The structure of liquid calcium aluminates as investigated by neutron and high-energy X-ray diffraction in combination with molecular dynamics simulation methods, J. Phys.: Condens. Matter 24 , 099501 (2012) [CrossRef] [Google Scholar]
  36. L. Hennet, J.W.E. Drewitt, D.R. Neuville, et al., Neutron diffraction of calcium aluminosilicate glasses and melts, J. Non-Cryst. Solids 451 , 89–93 (2016) [CrossRef] [Google Scholar]
  37. J.W.E. Drewitt, L. Hennet, A. Zeidler, et al., Structural transformations on vitrification in the fragile glass-forming system CaAl2O4 , Phys. Rev. Lett. 109 , 235501 (2012) [CrossRef] [Google Scholar]
  38. L. Hennet, D. Thiaudière, C. Landron, et al., Melting behavior of levitated Y2O3 , Appl. Phys. Lett. 83 , 3305–3307 (2003) [CrossRef] [Google Scholar]
  39. L. Cormier, D. Ghaleb, D.R. Neuville, et al., Chemical dependence of network topology of calcium aluminosilicate glasses: A computer simulation study, J. Non-Cryst. Solids 332 , 255–270 (2003) [CrossRef] [Google Scholar]
  40. S. Ispas, T. Charpentier, F. Mauri, et al., Structural properties of lithium and sodium tetrasilicate glasses: Molecular dynamics simulations versus NMR experimental and first-principles data, Solid State Sci. 12 , 183–192 (2010) [CrossRef] [Google Scholar]
  41. Y. Wang, T. Sakamaki, L.B. Skinner, et al., Atomistic insight into viscosity and density of silicate melts under pressure, Nat. Commun. 5 , 3241 (2014) [CrossRef] [Google Scholar]
  42. M. Bauchy, Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential, J. Chem. Phys. 141 , 024507 (2014) [CrossRef] [Google Scholar]
  43. D.C. Rapaport, The art of molecular dynamics simulation, 2nd ed, Cambridge University Press, Cambridge, UK, 2004 [CrossRef] [Google Scholar]
  44. J.F. Stebbins, X. Xue, NMR spectroscopy of inorganic Earth materials, Rev. Mineral. Geochem. 78 , 605–653 (2014) [CrossRef] [Google Scholar]
  45. H. Maekawa, T. Maekawa, K. Kawamura, et al., The structural groups of alkali silicate glasses determined from 29Si MAS-NMR, J. Non-Cryst. Solids 127 , 53–64 (1991) [CrossRef] [Google Scholar]
  46. C. Le Losq, B.O. Mysen, G.D. Cody, Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies, Progr. Earth Planet. Sci. 2 , (2015) [CrossRef] [Google Scholar]
  47. M.J. Duer, Introduction to solid-state NMR spectroscopy, Broché, 2004 [Google Scholar]
  48. D. Massiot, F. Fayon, V. Montouillout, et al., Structure and dynamics of oxide melts and glasses: A view from multinuclear and high temperature NMR, J. Non-Cryst. Solids 354 , 249–254 (2008) [CrossRef] [Google Scholar]
  49. B. Gault, M.P. Moody, J.M. Cairney, et al., Atom probe microscopy, Springer-Verlag, New York, 2012 [CrossRef] [Google Scholar]
  50. D.J. Larson, T.J. Prosa, R.M. Ulfig, et al., Local electrode atom probe tomography: A user’s guide, Springer-Verlag, New York, 2013 [CrossRef] [Google Scholar]
  51. W. Lefebvre-Ulrikson, F. Vurpillot, X. Sauvage, Atom probe tomography: Put theory into practice, Elsevier, 2016 [Google Scholar]
  52. W. Blanc, I. Martin, H. Francois-Saint-Cyr, et al., Compositional changes at the early stages of nanoparticles growth in glasses, J. Phys. Chem. C 123 , 29008–29014 (2019) [CrossRef] [Google Scholar]
  53. H. Francois-Saint-Cyr, M. Kang, I. Martin, et al., Three-dimensional microstructural characterization of novel chalcogenide nanocomposites for gradient refractive index applications, Microsc. Microanal. 25 , 2500–2501 (2019) [CrossRef] [Google Scholar]
  54. R.L. Smith, G.E. Sandland, An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness, Proc. Inst. Mech. Eng. 102 , 623–641 (1922) [CrossRef] [Google Scholar]
  55. M. Yamane, J.D. Mackenzie, Vicker’s hardness of glass, J. Non-Cryst. Solids 15 , 153–164 (1974) [CrossRef] [Google Scholar]
  56. M. Tiegel, R. Hosseinabadi, S. Kuhn, et al., Young’s modulus, Vickers hardness and indentation fracture toughness of alumino silicate glasses, Ceram. Int. 41 , 7267–7275 (2015) [CrossRef] [Google Scholar]
  57. M. Jensen, M.M. Smedskjaer, M. Estrup, et al., Hardness of basaltic glass-ceramics, Glass Technol. – Eur. J. Glass Sci. Technol. Part A 50 , 189–195 (2009) [Google Scholar]
  58. A. Mohajerani, J.W. Zwanziger, Mixed alkali effect on Vickers hardness and cracking, J. Non-Cryst. Solids 358 , 1474–1479 (2012) [CrossRef] [Google Scholar]
  59. H. Doweidar, Density-structure correlations in silicate glasses, J. Non-Cryst. Solids 249 , 194–200 (1999) [CrossRef] [Google Scholar]
  60. H. Doweidar, Modelling of density structure relations in silicate glasses containing Al2O3 , Phys. Chem. Glass. 42 , 42–48 (2001) [Google Scholar]
  61. D.R. Neuville, P. Richet, Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets, Geochim. Cosmochim. Acta 55 , 1011–1019 (1991) [CrossRef] [Google Scholar]
  62. J.L. Haas, J.R. Fisher, Simultaneous evaluation and correlation of thermodynamic data, Am. J. Sci. 276 , 525–545 (1976) [CrossRef] [Google Scholar]
  63. D.R. Neuville, C. Le Losq, Link between medium and long-range order and macroscopic properties of silicate glasses and melts, Geol. Melt. 87 , 105–162 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.