Issue
Matériaux & Techniques
Volume 110, Number 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
Article Number 404
Number of page(s) 14
Section Matériaux désordonnés : verres, vitrocéramiques… / Disordered matérials: Glasses, clays, vitroceramics…
DOI https://doi.org/10.1051/mattech/2022037
Published online 05 October 2022
  1. L. Cormier, D.R. Neuville, Les verres, quel désordre ?, Reflets Phys. (2022) [Google Scholar]
  2. D.R. Neuville, C. Le Losq, Link between medium and long-range order and macroscopic properties of silicate glasses and melts, Rev. Mineral. Geochem. 87(1), 105 (2022), https://doi.org/10.2138/rmg.2022.87.03 [CrossRef] [Google Scholar]
  3. J.D. Musgraves, J. Hu, L. Calvez, Springer handbook of glass, Springer, Cham, 2019 [CrossRef] [Google Scholar]
  4. G.S. Parks, H.M. Huffman, Glass as a fourth state of matter, Science 64(1658), 363 (1926), https://doi.org/10.1126/science.64.1658.363 [CrossRef] [Google Scholar]
  5. M. Descamps, États amorphe et vitreux des composés moléculaires et pharmaceutiques – Propriétés générales, Tech. Ing., PHA2030 (2020), https://doi.org/10.51257/a-v1-pha2032 [Google Scholar]
  6. W.H. Zachariasen, The atomic arrangement in glass, J. Am. Ceram. Soc. 54(10), 3841 (1932), https://doi.org/10.1021/ja01349a006 [Google Scholar]
  7. B. Toudic, Qu’est-ce qu’un cristal ?, Reflets Phys. 44-45, 18 (2015), https://doi.org/10.1051/refdp/20154445018 [CrossRef] [EDP Sciences] [Google Scholar]
  8. C. Le Losq, D.R. Neuville, P. Florian, et al., The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochim. Cosmochim. Acta 126, 495 (2014), https://doi.org/10.1016/j.gca.2013.11.010 [CrossRef] [Google Scholar]
  9. D.R. Neuville, Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol. 229, 28 (2006), https://doi.org/10.1016/j.chemgeo.2006.01.008 [CrossRef] [Google Scholar]
  10. A. Napolitano, P.B. Macedo, E.G. Hawkins, Viscosity and density of boron trioxide, J. Am. Ceram. Soc. 48(12), 613 (1965), https://doi.org/10.1111/j.1151-2916.1965.tb14690.x [CrossRef] [Google Scholar]
  11. A. Sipp, D.R. Neuville, P. Richet, Viscosity, configurational entropy and relaxation kinetics of borosilicate melts, J. Non-Cryst. Solids 211(3), 281 (1997), https://doi.org/10.1016/S0022-3093(96)00648-5 [CrossRef] [Google Scholar]
  12. C.T. Moynihan, A.J. Easteal, D.C. Tran, et al., Heat capacity and structural relaxation of mixed-alkali glasses, J. Am. Ceram. Soc. 59(3-4), 137 (1976), https://doi.org/10.1111/j.1151-2916.1976.tb09450.x [CrossRef] [Google Scholar]
  13. C.T. Moynihan, et al., Structural relaxation in vitreous materials, Ann. N. Y. Acad. Sci. 279(1), 15 (1976), https://doi.org/10.1111/j.1749-6632.1976.tb39688.x [CrossRef] [Google Scholar]
  14. M. Goldstein, Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid, J. Chem. Phys. 64(11), 4767 (1976), https://doi.org/10.1063/1.432063 [CrossRef] [Google Scholar]
  15. M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969), https://doi.org/10.1063/1.1672587 [CrossRef] [Google Scholar]
  16. S. Kashio, Y. Iguchi, T. Goto, et al., Raman spectroscopic study on the structure of silicate slag, Trans. Iron Steel Inst. Jpn. 20(4), 251 (1980), https://doi.org/10.2355/isijinternational1966.20.251 [CrossRef] [Google Scholar]
  17. K. Kusabiraki, Y. Shiraishi, Infrared emission spectra of molten alkaline metal silicates, J. Jpn. Inst. Met. 45(3), 250 (1981), https://doi.org/10.2320/jinstmet1952.45.3_250 [CrossRef] [Google Scholar]
  18. K. Kusabiraki, Y. Shiraishi, On the infrared emission Spectra of the molten Na2O-A2O3-SiO2 system, J. Jpn. Inst. Met. 45(9), 888 (1981), https://doi.org/10.2320/jinstmet1952.45.9_888 [CrossRef] [Google Scholar]
  19. D.R. Neuville, B.O. Mysen, Role of aluminium in the silicate network: in situ, high-temperature study of glasses and melts on the join SiO2kNaAlO2 , Geochim. Comoschim. Acta 60, 1727 (1996) [CrossRef] [Google Scholar]
  20. O.V. Mazurin, Relaxation phenomena in glass, J. Non-Cryst. Solids 25(1-3), 129 (1977), https://doi.org/10.1016/0022-3093(77)90092-8 [CrossRef] [Google Scholar]
  21. A.J. Kovacs, La variation isobare de la structure des verres. Esquisse d’une théorie phénoménologique à plusieurs paramètres d’ordre, J. Chim. Phys. 76, 1023 (1979), https://doi.org/10.1051/jcp/1979761023 [CrossRef] [EDP Sciences] [Google Scholar]
  22. C.T. Moynihan, P.K. Gupta, The order parameter model for structural relaxation in glass, J. Non-Cryst. Solids 29(2), 143 (1978), https://doi.org/10.1016/0022-3093(78)90110-2 [CrossRef] [Google Scholar]
  23. H. Sasabe, M.A. de Bolt, P.B. Macedo, et al., Structural relaxation in an alkali-lime-silicate glass, Prague, Czechoslovakia 339, (1977) [Google Scholar]
  24. D.R. Neuville, P. Richet, Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets, Geochim. Cosmochim. Acta 55(4), 1011, (1991), https://doi.org/10.1016/0016-7037(91)90159-3 [CrossRef] [Google Scholar]
  25. A.Q. Tool, C.G. Eichlin, Variations caused in the heating curves of glass by heat treatment, J. Am. Ceram. Soc. 14(4), 276 (1931), https://doi.org/10.1111/j.1151-2916.1931.tb16602.x [CrossRef] [Google Scholar]
  26. H.N. Ritland, Relation between refractive index and density of a glass at constant temperature, J. Am. Ceram. Soc. 38(2), 86 (1955), https://doi.org/10.1111/j.1151-2916.1955.tb14581.x [CrossRef] [Google Scholar]
  27. A. Winter, Transformation region of glass, J. Am. Ceram. Soc. 26(6), 189 (1943), https://doi.org/10.1111/j.1151-2916.1943.tb15210.x [CrossRef] [Google Scholar]
  28. J.W.E. Drewitt, L. Hennet, D.R. Neuville, From short to medium range order in glasses and melts by diffraction and Raman spectroscopy, Rev. Miner. Geochem. 87(1), 55 (2022), https://doi.org/10.2138/rmg.2022.87.02 [CrossRef] [Google Scholar]
  29. D.R. Neuville, P. Florian, C. Le Losq, et al., Structure et propriété des verres et des liquides : le rôle de l’aluminium, Mater. Tech. 98(6-7), 395 (2010), https://doi.org/10.1051/mattech/2011014 [CrossRef] [EDP Sciences] [Google Scholar]
  30. E. de Clermont Gallerande, D. Cabaret, G. Radtke, et al., Quantification of non-bridging oxygens in silicates using X-ray Raman scattering, J. Non-Cryst. Solids 528, 119715 (2020), https://doi.org/10.1016/j.jnoncrysol.2019.119715 [CrossRef] [Google Scholar]
  31. G. Lelong, G. Radtke, L. Cormier, et al., Detecting non-bridging oxygens: non-resonant inelastic X-ray scattering in crystalline lithium borates, Inorg. Chem. 53(20), 10903 (2014), https://doi.org/10.1021/ic501730q [CrossRef] [Google Scholar]
  32. C. Patrick Royall, S.R. Williams, T. Ohtsuka, et al., Direct observation of a local structural mechanism for dynamic arrest, Nat. Mater. 7(7), 556 (2008), https://doi.org/10.1038/nmat2219 [CrossRef] [Google Scholar]
  33. I. Ben Kacem, L. Gautron, D. Coillot, et al., Structure and properties of lead silicate glasses and melts, Chem. Geol. 461, 104 (2017), https://doi.org/10.1016/j.chemgeo.2017.03.030 [CrossRef] [Google Scholar]
  34. A. Bouquillon, P. Lehuédé, Le plomb dans les matériaux vitreux du patrimoine, ISTE Editions, London, 2022 [Google Scholar]
  35. M. Hunault, G. Calas, L. Galoisy, et al., Local ordering around tetrahedral Co2+ in silicate glasses, J. Am. Ceram. Soc. 97(1), 60 (2014), https://doi.org/10.1111/jace.12709 [CrossRef] [Google Scholar]
  36. M.O.J.Y. Hunault, L. Galoisy, G. Lelong, et al., Effect of cation field strength on Co2+ speciation in alkali-borate glasses, J. Non-Cryst. Solids 451, 101 (2016), https://doi.org/10.1016/j.jnoncrysol.2016.06.025 [CrossRef] [Google Scholar]
  37. L. Galoisy, G. Calas, L. Cormier, et al., Overview of the environment of Ni in oxide glasses in relation to the glass colouration, Phys. Chem. Glas. 46(4), 394 (2005) [Google Scholar]
  38. L. Cormier, L. Galoisy, G. Calas, Evidence of Ni-containing ordered domains in low alkali borate glasses, Eur. Lett. 45, 572 (1999), https://doi.org/10.1209/epl/i1999-00205-7 [CrossRef] [Google Scholar]
  39. G. Calas, L. Galoisy, L. Cormier, The color of glass, in: P. Richet, R. Conradt, A. Takada, J. Dyon (Eds.), Encyclopedia of Glass Science, Technology, History, and Culture, 1re éd., Wiley, 677 (2021), https://doi.org/10.1002/9781118801017.ch6.2 [Google Scholar]
  40. D. de Ligny, D. Möncke, Colors in glasses, in: J.D. Musgraves, J. Hu, L. Calvez (Eds.), Springer handbook of glass, Springer International Publishing, Cham, 297 (2019), https://doi.org/10.1007/978-3-319-93728-1_9 [Google Scholar]
  41. D. Iuga, C. Morais, Z. Gan, et al., NMR heteronuclear correlation between quadrupolar nuclei in solids, J. Am. Chem. Soc. 127(33), 11540 (2005), https://doi.org/10.1021/ja052452n [CrossRef] [Google Scholar]
  42. M. Eden, NMR studies of oxide-based glasses, Ann. Rep. Prog. Chem. Sect. C 108, 177 (2012), https://doi.org/10.1039/C2PC90006H [CrossRef] [Google Scholar]
  43. J.F. Stebbins, P. Zhao, S.K. Lee, et al., Direct observation of multiple oxygen sites in oxide glasses: recent advances from triple-quantum magic-angle spinning nuclear magnetic resonance, J. Non-Cryst. Solids 293-295, 67 (2001), https://doi.org/10.1016/S0022-3093(01)00653-6 [CrossRef] [Google Scholar]
  44. A. Pradel, A. Piarristeguy, Thio and selenosilicates, sulfide and selenide counterparts of silicates: Similarities and differences, C. R. Geosci. 354(S1), 1 (2022), https://doi.org/10.5802/crgeos.109 [Google Scholar]
  45. G.N. Greaves, EXAFS and the structure of glass, J. Non-Cryst. Solids 71(1-3), 203 (1985), https://doi.org/10.1016/0022-3093(85)90289-3 [CrossRef] [Google Scholar]
  46. G.N. Greaves, A. Fontaine, P. Lagarde, et al., Local structure of silicate glasses, Nature 293(5834), 611 (1981), https://doi.org/10.1038/293611a0 [CrossRef] [Google Scholar]
  47. G. Calas, L. Cormier, L. Galoisy, et al., Structure-property relationships in multicomponent oxide glasses, C. R. Chim. 5, 831 (2002), https://doi.org/10.1016/S1631-0748(02)01459-5 [CrossRef] [Google Scholar]
  48. L. Cormier, O. Dargaud, G. Calas, et al., Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys. 152, 41 (2015), https://doi.org/10.1016/j.matchemphys.2014.12.008 [CrossRef] [Google Scholar]
  49. L. Cormier, P.H. Gaskell, G. Calas, et al., Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution, Phys. Rev. B 58(17), 11322 (1998), https://doi.org/10.1103/PhysRevB.58.11322 [CrossRef] [Google Scholar]
  50. L. Cormier, L. Galoisy, J.-M. Delaye, et al., Short- and medium-range structural order around cations in glasses: A multidisciplinary approach, C. R. Acad. Sci. Ser. IV 2, 249 (2001), https://doi.org/10.1016/S1296-2147(01)01168-4 [Google Scholar]
  51. M.C. Eckersley, P.H. Gaskell, A.C. Barnes, et al., Structural ordering in a calcium silicate glass, Nature 335, 525 (1988), https://doi.org/10.1038/335525a0 [CrossRef] [Google Scholar]
  52. C. Le Losq, D.R. Neuville, P. Florian, et al., Percolation channels: A universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep. 7(1), 16490 (2017), https://doi.org/10.1038/s41598-017-16741-3 [CrossRef] [Google Scholar]
  53. D.R. Neuville, L. Cormier, V. Montouillout, et al., Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR, J. Non-Cryst. Solids 353(2), 180 (2007), https://doi.org/10.1016/j.jnoncrysol.2006.09.035 [CrossRef] [Google Scholar]
  54. D.R. Neuville, L. Cormier, D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol. 229, 173 (2006), https://doi.org/10.1016/j.chemgeo.2006.01.019 [CrossRef] [Google Scholar]
  55. D.R. Neuville, L. Cormier, A.-M. Flank, et al., Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy, Chem. Geol. 213, 153 (2004), https://doi.org/10.1016/j.chemgeo.2004.08.039 [CrossRef] [Google Scholar]
  56. D.R. Neuville, L. Cormier, D. Massiot, Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and EXAFS investigation, Geochim. Cosmochim. Acta 68(24), 5071 (2004), https://doi.org/10.1016/j.gca.2004.05.048 [CrossRef] [Google Scholar]
  57. L. Cormier, G. Calas, P.H. Gaskell, Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution, Chem. Geol. 174(1-3), 349 (2001), https://doi.org/10.1016/S0009-2541(00)00325-9 [CrossRef] [Google Scholar]
  58. P.H. Gaskell, M.C. Eckersley, A.C. Barnes, et al., Medium-range order in the cation distribution of a calcium silicate glass, Nature 350(6320), 675 (1991), https://doi.org/10.1038/350675a0 [CrossRef] [Google Scholar]
  59. G.N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56(1), 1 (2007), https://doi.org/10.1080/00018730601147426 [CrossRef] [Google Scholar]
  60. F. Kargl, A. Meyer, Na-relaxation and intermediate range structure in sodium-potassium silicate melts, Chem. Geol. 256, 278 (2008), https://doi.org/10.1016/j.chemgeo.2008.06.046 [CrossRef] [Google Scholar]
  61. A. Meyer, J. Horbach, W. Kob, et al., Channel formation and intermediate range order in sodium silicate melts and glasses, Phys. Rev. Lett. 93(2), 027801 (2004), https://doi.org/10.1103/PhysRevLett.93.027801 [CrossRef] [Google Scholar]
  62. B.E. Warren, Summary of work on atomic arrangement in glass, J. Am. Ceram. Soc. 24, 256 (1941), https://doi.org/10.1111/j.1151-2916.1941.tb14858.x [CrossRef] [Google Scholar]
  63. B.E. Warren, J. Biscoe, Fourier analysis of X-ray patterns of soda-silica glass, J. Am. Ceram. Soc. 21, 259 (1938), https://doi.org/10.1111/j.1151-2916.1938.tb15774.x [CrossRef] [Google Scholar]
  64. G.N. Greaves, K.L. Ngai, Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B 52(9), 6358 (1995), https://doi.org/10.1103/PhysRevB.52.6358 [CrossRef] [Google Scholar]
  65. H. Shintani, H. Tanaka, Frustration on the way to crystallization in glass, Nat. Phys. 2(3), 200 (2006), https://doi.org/10.1038/nphys235 [CrossRef] [Google Scholar]
  66. M. Moesgaard, R. Keding, J. Skibsted, et al., Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses, Chem. Mater. 22(15), 4471 (2010), https://doi.org/10.1021/cm1011795 [CrossRef] [Google Scholar]
  67. O. Dargaud, L. Cormier, N. Menguy, et al., Multi-scale structuration of glasses: observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids 358(10), 1257 (2012), https://doi.org/10.1016/j.jnoncrysol.2012.02.026 [CrossRef] [Google Scholar]
  68. O. Dargaud, L. Cormier, N. Menguy, et al., Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett. 99(2), 021904 (2011), https://doi.org/10.1063/1.3610557 [CrossRef] [Google Scholar]
  69. R.A. Robie, B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, U.S. G.P.O; For sale by U.S. Geological Survey, Information Services, USGS Numbered Series 2131, (1995), https://doi.org/10.3133/b2131 [Google Scholar]
  70. Y. Linard, Détermination des enthalpies libres de formation des verres borosilicatés : application à l’étude de l’altération des verres de confinement de déchets industriels, PhD Thesis, Paris VII, Paris, 2000 [Google Scholar]
  71. J. Majzlan, A. Navrotsky, B.J. Evans, Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase, Phys. Chem. Miner. 29(8), 515 (2002), https://doi.org/10.1007/s00269-002-0261-7 [CrossRef] [Google Scholar]
  72. A. Navrotsky, Repeating patterns in mineral energetics, Am. Miner. 79(7-8), 589 (1994) [Google Scholar]
  73. A. Navrotsky, R. Hon, D.F. Weill, et al., Thermochemistry of glasses and liquids in the systems CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8, SiO2–CaAl2Si2O8–NaAlSi3O8 and SiO2–Al2O3–CaO–Na2O, Geochim. Cosmochim. Acta 44(10), 1409 (1980), https://doi.org/10.1016/0016-7037(80)90107-6 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.