Open Access
Review
Numéro |
Matériaux & Techniques
Volume 110, Numéro 4, 2022
Special Issue on ‘Glass in our daily life’, edited by Xavier Capilla, Frédéric Angeli and Daniel R. Neuville
|
|
---|---|---|
Numéro d'article | 404 | |
Nombre de pages | 14 | |
Section | Matériaux désordonnés : verres, vitrocéramiques… / Disordered matérials: Glasses, clays, vitroceramics… | |
DOI | https://doi.org/10.1051/mattech/2022037 | |
Publié en ligne | 5 octobre 2022 |
- L. Cormier, D.R. Neuville, Les verres, quel désordre ?, Reflets Phys. (2022) [Google Scholar]
- D.R. Neuville, C. Le Losq, Link between medium and long-range order and macroscopic properties of silicate glasses and melts, Rev. Mineral. Geochem. 87(1), 105 (2022), https://doi.org/10.2138/rmg.2022.87.03 [CrossRef] [Google Scholar]
- J.D. Musgraves, J. Hu, L. Calvez, Springer handbook of glass, Springer, Cham, 2019 [CrossRef] [Google Scholar]
- G.S. Parks, H.M. Huffman, Glass as a fourth state of matter, Science 64(1658), 363 (1926), https://doi.org/10.1126/science.64.1658.363 [CrossRef] [Google Scholar]
- M. Descamps, États amorphe et vitreux des composés moléculaires et pharmaceutiques – Propriétés générales, Tech. Ing., PHA2030 (2020), https://doi.org/10.51257/a-v1-pha2032 [Google Scholar]
- W.H. Zachariasen, The atomic arrangement in glass, J. Am. Ceram. Soc. 54(10), 3841 (1932), https://doi.org/10.1021/ja01349a006 [Google Scholar]
- B. Toudic, Qu’est-ce qu’un cristal ?, Reflets Phys. 44-45, 18 (2015), https://doi.org/10.1051/refdp/20154445018 [CrossRef] [EDP Sciences] [Google Scholar]
- C. Le Losq, D.R. Neuville, P. Florian, et al., The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochim. Cosmochim. Acta 126, 495 (2014), https://doi.org/10.1016/j.gca.2013.11.010 [CrossRef] [Google Scholar]
- D.R. Neuville, Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol. 229, 28 (2006), https://doi.org/10.1016/j.chemgeo.2006.01.008 [CrossRef] [Google Scholar]
- A. Napolitano, P.B. Macedo, E.G. Hawkins, Viscosity and density of boron trioxide, J. Am. Ceram. Soc. 48(12), 613 (1965), https://doi.org/10.1111/j.1151-2916.1965.tb14690.x [CrossRef] [Google Scholar]
- A. Sipp, D.R. Neuville, P. Richet, Viscosity, configurational entropy and relaxation kinetics of borosilicate melts, J. Non-Cryst. Solids 211(3), 281 (1997), https://doi.org/10.1016/S0022-3093(96)00648-5 [CrossRef] [Google Scholar]
- C.T. Moynihan, A.J. Easteal, D.C. Tran, et al., Heat capacity and structural relaxation of mixed-alkali glasses, J. Am. Ceram. Soc. 59(3-4), 137 (1976), https://doi.org/10.1111/j.1151-2916.1976.tb09450.x [CrossRef] [Google Scholar]
- C.T. Moynihan, et al., Structural relaxation in vitreous materials, Ann. N. Y. Acad. Sci. 279(1), 15 (1976), https://doi.org/10.1111/j.1749-6632.1976.tb39688.x [CrossRef] [Google Scholar]
- M. Goldstein, Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid, J. Chem. Phys. 64(11), 4767 (1976), https://doi.org/10.1063/1.432063 [CrossRef] [Google Scholar]
- M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969), https://doi.org/10.1063/1.1672587 [CrossRef] [Google Scholar]
- S. Kashio, Y. Iguchi, T. Goto, et al., Raman spectroscopic study on the structure of silicate slag, Trans. Iron Steel Inst. Jpn. 20(4), 251 (1980), https://doi.org/10.2355/isijinternational1966.20.251 [CrossRef] [Google Scholar]
- K. Kusabiraki, Y. Shiraishi, Infrared emission spectra of molten alkaline metal silicates, J. Jpn. Inst. Met. 45(3), 250 (1981), https://doi.org/10.2320/jinstmet1952.45.3_250 [CrossRef] [Google Scholar]
- K. Kusabiraki, Y. Shiraishi, On the infrared emission Spectra of the molten Na2O-A2O3-SiO2 system, J. Jpn. Inst. Met. 45(9), 888 (1981), https://doi.org/10.2320/jinstmet1952.45.9_888 [CrossRef] [Google Scholar]
- D.R. Neuville, B.O. Mysen, Role of aluminium in the silicate network: in situ, high-temperature study of glasses and melts on the join SiO2kNaAlO2 , Geochim. Comoschim. Acta 60, 1727 (1996) [CrossRef] [Google Scholar]
- O.V. Mazurin, Relaxation phenomena in glass, J. Non-Cryst. Solids 25(1-3), 129 (1977), https://doi.org/10.1016/0022-3093(77)90092-8 [CrossRef] [Google Scholar]
- A.J. Kovacs, La variation isobare de la structure des verres. Esquisse d’une théorie phénoménologique à plusieurs paramètres d’ordre, J. Chim. Phys. 76, 1023 (1979), https://doi.org/10.1051/jcp/1979761023 [CrossRef] [EDP Sciences] [Google Scholar]
- C.T. Moynihan, P.K. Gupta, The order parameter model for structural relaxation in glass, J. Non-Cryst. Solids 29(2), 143 (1978), https://doi.org/10.1016/0022-3093(78)90110-2 [CrossRef] [Google Scholar]
- H. Sasabe, M.A. de Bolt, P.B. Macedo, et al., Structural relaxation in an alkali-lime-silicate glass, Prague, Czechoslovakia 339, (1977) [Google Scholar]
- D.R. Neuville, P. Richet, Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets, Geochim. Cosmochim. Acta 55(4), 1011, (1991), https://doi.org/10.1016/0016-7037(91)90159-3 [CrossRef] [Google Scholar]
- A.Q. Tool, C.G. Eichlin, Variations caused in the heating curves of glass by heat treatment, J. Am. Ceram. Soc. 14(4), 276 (1931), https://doi.org/10.1111/j.1151-2916.1931.tb16602.x [CrossRef] [Google Scholar]
- H.N. Ritland, Relation between refractive index and density of a glass at constant temperature, J. Am. Ceram. Soc. 38(2), 86 (1955), https://doi.org/10.1111/j.1151-2916.1955.tb14581.x [CrossRef] [Google Scholar]
- A. Winter, Transformation region of glass, J. Am. Ceram. Soc. 26(6), 189 (1943), https://doi.org/10.1111/j.1151-2916.1943.tb15210.x [CrossRef] [Google Scholar]
- J.W.E. Drewitt, L. Hennet, D.R. Neuville, From short to medium range order in glasses and melts by diffraction and Raman spectroscopy, Rev. Miner. Geochem. 87(1), 55 (2022), https://doi.org/10.2138/rmg.2022.87.02 [CrossRef] [Google Scholar]
- D.R. Neuville, P. Florian, C. Le Losq, et al., Structure et propriété des verres et des liquides : le rôle de l’aluminium, Mater. Tech. 98(6-7), 395 (2010), https://doi.org/10.1051/mattech/2011014 [CrossRef] [EDP Sciences] [Google Scholar]
- E. de Clermont Gallerande, D. Cabaret, G. Radtke, et al., Quantification of non-bridging oxygens in silicates using X-ray Raman scattering, J. Non-Cryst. Solids 528, 119715 (2020), https://doi.org/10.1016/j.jnoncrysol.2019.119715 [CrossRef] [Google Scholar]
- G. Lelong, G. Radtke, L. Cormier, et al., Detecting non-bridging oxygens: non-resonant inelastic X-ray scattering in crystalline lithium borates, Inorg. Chem. 53(20), 10903 (2014), https://doi.org/10.1021/ic501730q [CrossRef] [Google Scholar]
- C. Patrick Royall, S.R. Williams, T. Ohtsuka, et al., Direct observation of a local structural mechanism for dynamic arrest, Nat. Mater. 7(7), 556 (2008), https://doi.org/10.1038/nmat2219 [CrossRef] [Google Scholar]
- I. Ben Kacem, L. Gautron, D. Coillot, et al., Structure and properties of lead silicate glasses and melts, Chem. Geol. 461, 104 (2017), https://doi.org/10.1016/j.chemgeo.2017.03.030 [CrossRef] [Google Scholar]
- A. Bouquillon, P. Lehuédé, Le plomb dans les matériaux vitreux du patrimoine, ISTE Editions, London, 2022 [Google Scholar]
- M. Hunault, G. Calas, L. Galoisy, et al., Local ordering around tetrahedral Co2+ in silicate glasses, J. Am. Ceram. Soc. 97(1), 60 (2014), https://doi.org/10.1111/jace.12709 [CrossRef] [Google Scholar]
- M.O.J.Y. Hunault, L. Galoisy, G. Lelong, et al., Effect of cation field strength on Co2+ speciation in alkali-borate glasses, J. Non-Cryst. Solids 451, 101 (2016), https://doi.org/10.1016/j.jnoncrysol.2016.06.025 [CrossRef] [Google Scholar]
- L. Galoisy, G. Calas, L. Cormier, et al., Overview of the environment of Ni in oxide glasses in relation to the glass colouration, Phys. Chem. Glas. 46(4), 394 (2005) [Google Scholar]
- L. Cormier, L. Galoisy, G. Calas, Evidence of Ni-containing ordered domains in low alkali borate glasses, Eur. Lett. 45, 572 (1999), https://doi.org/10.1209/epl/i1999-00205-7 [CrossRef] [Google Scholar]
- G. Calas, L. Galoisy, L. Cormier, The color of glass, in: P. Richet, R. Conradt, A. Takada, J. Dyon (Eds.), Encyclopedia of Glass Science, Technology, History, and Culture, 1re éd., Wiley, 677 (2021), https://doi.org/10.1002/9781118801017.ch6.2 [Google Scholar]
- D. de Ligny, D. Möncke, Colors in glasses, in: J.D. Musgraves, J. Hu, L. Calvez (Eds.), Springer handbook of glass, Springer International Publishing, Cham, 297 (2019), https://doi.org/10.1007/978-3-319-93728-1_9 [Google Scholar]
- D. Iuga, C. Morais, Z. Gan, et al., NMR heteronuclear correlation between quadrupolar nuclei in solids, J. Am. Chem. Soc. 127(33), 11540 (2005), https://doi.org/10.1021/ja052452n [CrossRef] [Google Scholar]
- M. Eden, NMR studies of oxide-based glasses, Ann. Rep. Prog. Chem. Sect. C 108, 177 (2012), https://doi.org/10.1039/C2PC90006H [CrossRef] [Google Scholar]
- J.F. Stebbins, P. Zhao, S.K. Lee, et al., Direct observation of multiple oxygen sites in oxide glasses: recent advances from triple-quantum magic-angle spinning nuclear magnetic resonance, J. Non-Cryst. Solids 293-295, 67 (2001), https://doi.org/10.1016/S0022-3093(01)00653-6 [CrossRef] [Google Scholar]
- A. Pradel, A. Piarristeguy, Thio and selenosilicates, sulfide and selenide counterparts of silicates: Similarities and differences, C. R. Geosci. 354(S1), 1 (2022), https://doi.org/10.5802/crgeos.109 [Google Scholar]
- G.N. Greaves, EXAFS and the structure of glass, J. Non-Cryst. Solids 71(1-3), 203 (1985), https://doi.org/10.1016/0022-3093(85)90289-3 [CrossRef] [Google Scholar]
- G.N. Greaves, A. Fontaine, P. Lagarde, et al., Local structure of silicate glasses, Nature 293(5834), 611 (1981), https://doi.org/10.1038/293611a0 [CrossRef] [Google Scholar]
- G. Calas, L. Cormier, L. Galoisy, et al., Structure-property relationships in multicomponent oxide glasses, C. R. Chim. 5, 831 (2002), https://doi.org/10.1016/S1631-0748(02)01459-5 [CrossRef] [Google Scholar]
- L. Cormier, O. Dargaud, G. Calas, et al., Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys. 152, 41 (2015), https://doi.org/10.1016/j.matchemphys.2014.12.008 [CrossRef] [Google Scholar]
- L. Cormier, P.H. Gaskell, G. Calas, et al., Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution, Phys. Rev. B 58(17), 11322 (1998), https://doi.org/10.1103/PhysRevB.58.11322 [CrossRef] [Google Scholar]
- L. Cormier, L. Galoisy, J.-M. Delaye, et al., Short- and medium-range structural order around cations in glasses: A multidisciplinary approach, C. R. Acad. Sci. Ser. IV 2, 249 (2001), https://doi.org/10.1016/S1296-2147(01)01168-4 [Google Scholar]
- M.C. Eckersley, P.H. Gaskell, A.C. Barnes, et al., Structural ordering in a calcium silicate glass, Nature 335, 525 (1988), https://doi.org/10.1038/335525a0 [CrossRef] [Google Scholar]
- C. Le Losq, D.R. Neuville, P. Florian, et al., Percolation channels: A universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep. 7(1), 16490 (2017), https://doi.org/10.1038/s41598-017-16741-3 [CrossRef] [Google Scholar]
- D.R. Neuville, L. Cormier, V. Montouillout, et al., Local Al site distribution in aluminosilicate glasses by 27Al MQMAS NMR, J. Non-Cryst. Solids 353(2), 180 (2007), https://doi.org/10.1016/j.jnoncrysol.2006.09.035 [CrossRef] [Google Scholar]
- D.R. Neuville, L. Cormier, D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol. 229, 173 (2006), https://doi.org/10.1016/j.chemgeo.2006.01.019 [CrossRef] [Google Scholar]
- D.R. Neuville, L. Cormier, A.-M. Flank, et al., Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy, Chem. Geol. 213, 153 (2004), https://doi.org/10.1016/j.chemgeo.2004.08.039 [CrossRef] [Google Scholar]
- D.R. Neuville, L. Cormier, D. Massiot, Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and EXAFS investigation, Geochim. Cosmochim. Acta 68(24), 5071 (2004), https://doi.org/10.1016/j.gca.2004.05.048 [CrossRef] [Google Scholar]
- L. Cormier, G. Calas, P.H. Gaskell, Cationic environment in silicate glasses studied by neutron diffraction with isotopic substitution, Chem. Geol. 174(1-3), 349 (2001), https://doi.org/10.1016/S0009-2541(00)00325-9 [CrossRef] [Google Scholar]
- P.H. Gaskell, M.C. Eckersley, A.C. Barnes, et al., Medium-range order in the cation distribution of a calcium silicate glass, Nature 350(6320), 675 (1991), https://doi.org/10.1038/350675a0 [CrossRef] [Google Scholar]
- G.N. Greaves, S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids, Adv. Phys. 56(1), 1 (2007), https://doi.org/10.1080/00018730601147426 [CrossRef] [Google Scholar]
- F. Kargl, A. Meyer, Na-relaxation and intermediate range structure in sodium-potassium silicate melts, Chem. Geol. 256, 278 (2008), https://doi.org/10.1016/j.chemgeo.2008.06.046 [CrossRef] [Google Scholar]
- A. Meyer, J. Horbach, W. Kob, et al., Channel formation and intermediate range order in sodium silicate melts and glasses, Phys. Rev. Lett. 93(2), 027801 (2004), https://doi.org/10.1103/PhysRevLett.93.027801 [CrossRef] [Google Scholar]
- B.E. Warren, Summary of work on atomic arrangement in glass, J. Am. Ceram. Soc. 24, 256 (1941), https://doi.org/10.1111/j.1151-2916.1941.tb14858.x [CrossRef] [Google Scholar]
- B.E. Warren, J. Biscoe, Fourier analysis of X-ray patterns of soda-silica glass, J. Am. Ceram. Soc. 21, 259 (1938), https://doi.org/10.1111/j.1151-2916.1938.tb15774.x [CrossRef] [Google Scholar]
- G.N. Greaves, K.L. Ngai, Reconciling ionic-transport properties with atomic structure in oxide glasses, Phys. Rev. B 52(9), 6358 (1995), https://doi.org/10.1103/PhysRevB.52.6358 [CrossRef] [Google Scholar]
- H. Shintani, H. Tanaka, Frustration on the way to crystallization in glass, Nat. Phys. 2(3), 200 (2006), https://doi.org/10.1038/nphys235 [CrossRef] [Google Scholar]
- M. Moesgaard, R. Keding, J. Skibsted, et al., Evidence of intermediate-range order heterogeneity in calcium aluminosilicate glasses, Chem. Mater. 22(15), 4471 (2010), https://doi.org/10.1021/cm1011795 [CrossRef] [Google Scholar]
- O. Dargaud, L. Cormier, N. Menguy, et al., Multi-scale structuration of glasses: observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids 358(10), 1257 (2012), https://doi.org/10.1016/j.jnoncrysol.2012.02.026 [CrossRef] [Google Scholar]
- O. Dargaud, L. Cormier, N. Menguy, et al., Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett. 99(2), 021904 (2011), https://doi.org/10.1063/1.3610557 [CrossRef] [Google Scholar]
- R.A. Robie, B.S. Hemingway, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures, U.S. G.P.O; For sale by U.S. Geological Survey, Information Services, USGS Numbered Series 2131, (1995), https://doi.org/10.3133/b2131 [Google Scholar]
- Y. Linard, Détermination des enthalpies libres de formation des verres borosilicatés : application à l’étude de l’altération des verres de confinement de déchets industriels, PhD Thesis, Paris VII, Paris, 2000 [Google Scholar]
- J. Majzlan, A. Navrotsky, B.J. Evans, Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase, Phys. Chem. Miner. 29(8), 515 (2002), https://doi.org/10.1007/s00269-002-0261-7 [CrossRef] [Google Scholar]
- A. Navrotsky, Repeating patterns in mineral energetics, Am. Miner. 79(7-8), 589 (1994) [Google Scholar]
- A. Navrotsky, R. Hon, D.F. Weill, et al., Thermochemistry of glasses and liquids in the systems CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8, SiO2–CaAl2Si2O8–NaAlSi3O8 and SiO2–Al2O3–CaO–Na2O, Geochim. Cosmochim. Acta 44(10), 1409 (1980), https://doi.org/10.1016/0016-7037(80)90107-6 [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.