Numéro
Matériaux & Techniques
Volume 109, Numéro 3-4, 2021
Special Issue on ‘Overview, state of the art, recent developments and future trends regarding Hydrogen route for a green steel making process’, edited by Ismael Matino and Valentina Colla
Numéro d'article 308
Nombre de pages 13
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2022009
Publié en ligne 4 mars 2022
  1. European Commission, What is the European Green Deal?, 2019, https://ec.europa.eu/commission/presscorner/api/files/attachment/859152/What_is_the_European_Green_Deal_en.pdf.pdf [Google Scholar]
  2. European Commission, Towards competitive and clean European steel, 2021, https://ec.europa.eu/info/sites/default/files/swd-competitive-clean-european-steel_en.pdf [Google Scholar]
  3. G.F. Porzio, B. Fornai, A. Amato, et al., Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [Google Scholar]
  4. G.F. Porzio, G. Nastasi, V. Colla, et al., Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork, Appl. Energy 136, 1085–1097 (2014) [CrossRef] [Google Scholar]
  5. A. Maddaloni, R. Matino, I. Matino, et al., A quadratic programming model for the optimization of off-gas networks in integrated steelworks, Matériaux & Techniques 107(5), 502 (2019) [Google Scholar]
  6. V. Colla, I. Matino, S. Dettori, et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux & Techniques 107(1), 104 (2019) [Google Scholar]
  7. D.C. Rosenfeld, H. Böhm, J. Lindorfer, et al., Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study, Renew. Energy 147, 1511–1524 (2020) [CrossRef] [Google Scholar]
  8. S.E. Lyke, R.H. Moore, Chemical production from industrial by-product gases (No. PNL-3753), Battelle Pacific Northwest Labs., Richland, WA (USA), 1981 [CrossRef] [Google Scholar]
  9. J. Cordier, B. Dussart, Ammonia and methanol production-how savings can be made, Pet. Tech. 307, (1984) [Google Scholar]
  10. S. Kim, J. Kim, The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis, Fuel 266, 117093 (2020) [CrossRef] [Google Scholar]
  11. L. Deng, T.A. Adams II, Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manage. 204, 112315 (2020) [CrossRef] [Google Scholar]
  12. D. Kim, J. Han, Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst, Energy 198, 117355 (2020) [CrossRef] [Google Scholar]
  13. F. Patisson, O. Mirgaux, Hydrogen ironmaking: How it works, Metals 10(7), 922 (2020) [CrossRef] [Google Scholar]
  14. J. Tang, M.S. Chu, F. Li, et al., Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater. 27(6), 713–723 (2020) [CrossRef] [Google Scholar]
  15. T. Buergler, J. Prammer, Hydrogen steelmaking: Technology options and R&D projects, BHM Berg-und Hüttenmännische Monatshefte 164(11), 447–451 (2019) [CrossRef] [Google Scholar]
  16. M. Pei, M. Petäjäniemi, A. Regnell, et al., Toward a fossil free future with hybrit: Development of iron and steelmaking technology in Sweden and Finland, Metals 10(7), 972 (2020) [Google Scholar]
  17. F. Cirilli, G. Jochler, T. Boniotti, et al., Effects of H2 combustion on scale growth and steel surface quality in reheating furnaces, in: ESTEP H2GreenSteel Web-Workshop, Virtual, 7, 21, 28 May 2021 and 11 June 2021, 2021 [Google Scholar]
  18. J. von Schéele, Technologies for use of hydrogen in melting, heating and reheating, in: ESTEP H2GreenSteel Web-Workshop, Virtual, 7, 21, 28 May 2021 and 11 June 2021, 2021 [Google Scholar]
  19. A. Zaccara, A. Petrucciani, I. Matino, et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10(11), 1535 (2020) [CrossRef] [Google Scholar]
  20. M. Bampaou, K. Panopoulos, P. Seferlis, et al., Integration of renewable hydrogen production in steelworks off-gases for the synthesis of methanol and methane, Energies 14(10), 2904 (2021) [CrossRef] [Google Scholar]
  21. J. Gao, Y. Wang, Y. Ping, et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2(6), 2358–2368 (2012) [CrossRef] [Google Scholar]
  22. G.H. Graaf, J.G.M. Winkelman, E.J. Stamhuis, et al., Kinetics of the three phase methanol synthesis, in: Tenth International Symposium on Chemical Reaction Engineering, Pergamon, pp. 2161–2168, 1988 [Google Scholar]
  23. S. Dettori, I. Matino, V. Colla, et al., A deep learning-based approach for forecasting off-gas production and consumption in the blast furnace, Neural Comput. Applicat. 1–13 (2021) [Google Scholar]
  24. I. Matino, S. Dettori, V. Colla, et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, 113578 (2019) [CrossRef] [Google Scholar]
  25. V. Colla, I. Matino, S. Dettori, et al., Reservoir computing approaches applied to energy management in industry, in: International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 66–79, 2019 [Google Scholar]
  26. M.C. Ozturk, D. Xu, J.C. Principe, Analysis and design of echo state networks, Neural Comput. 19(1), 111–138 (2007) [CrossRef] [Google Scholar]
  27. A. Hauser, M. Weitzer, S. Gunsch, et al., Dynamic hydrogen-intensified methanation of synthetic by-product gases from steelworks, Fuel Process. Technol. 217, 106701 (2021) [CrossRef] [Google Scholar]
  28. A. Hauser, J. Karl, Dynamic methanation of by-product gases from integrated steelworks, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  29. P. Wolf-Zöllner, A. Krammer, A. Medved, et al., Dynamic methanation of by-product gases from integrated steelworks, in: 14th Mediterranean Congress of Chemical Engineering, Virtual, 16–20 November 2020 [Google Scholar]
  30. P. Wolf-Zöllner, A. Krammer, A. Medved, et al., Dynamic methanation of by-product gases from integrated steelworks, in: International Conference on Polygeneration Strategies, Vienna, 18–19 November 2019 [Google Scholar]
  31. P. Wolf-Zöllner, Innovative reactor design and dynamic methanation at MUL, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  32. K.L. Fischer, H. Freund, Intensification of load flexible fixed bed reactors by optimal design of staged reactor setups, Chem. Eng. Process. –Process Intensif. 159, 108183 (2021) [CrossRef] [Google Scholar]
  33. K.L. Fischer, H. Freund, On the optimal design of load flexible fixed bed reactors: Integration of dynamics into the design problem, Chem. Eng. J. 393, 124722 (2020) [CrossRef] [Google Scholar]
  34. T. Oelmann, T. Schuhmann, M. Gorny, et al., A new reactor concept for conversion of CO2 to methanol, in: DGMK Conference 2020: The Future of Chemicals and Fuels – Feedstock and Process Technologies, Virtual, 08 October 2020 [Google Scholar]
  35. S. Haag, T. Renner, C. Drosdzol, et al., Innovative concept for methanol synthesis using unconventional gases as feedstock, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  36. M. Su, Z. Zhang, Y. Zhu, et al., Data-driven natural gas spot price forecasting with least squares regression boosting algorithm, Energies 12(6), 1094 (2019) [Google Scholar]
  37. G.S. Atsalakis, Using computational intelligence to forecast carbon prices, Appl. Soft Comput. 43, 107–116 (2016) [CrossRef] [Google Scholar]
  38. B. Zhu, A novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural network, Energies 5(2), 355–370 (2012) [CrossRef] [Google Scholar]
  39. L. Jiang, P. Wu, International carbon market price forecasting using an integration model based on SVR, in: International Conference on Engineering Management, Engineering Education and Information Technology, 2015 [Google Scholar]
  40. X. Fan, S. Li, L. Tian, Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model, Exp. Syst. Appl. 42(8), 3945–3952 (2015) [CrossRef] [Google Scholar]
  41. M. Ellis, H. Durand, P.D. Christofides, A tutorial review of economic model predictive control methods, J. Process Control 24(8), 1156–1178 (2014) [CrossRef] [Google Scholar]
  42. D.P. De Silva, J.L.F. Salles, J.F. Fardin, et al., Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data, Appl. Energy 278, 115581 (2020) [CrossRef] [Google Scholar]
  43. J. Lofberg, YALMIP: A tool box for modeling and optimization in MATLAB, in: 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), IEEE, pp. 284–289, 2004 [Google Scholar]
  44. GUROBI Optimization, https://www.gurobi.com/ [Google Scholar]
  45. Worldsteel Association, Climate change and the production of iron and steel, 2020, https://worldsteel.org/wp-content/uploads/Climate-change-and-the-production-of-iron-and-steel.pdf [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.