Numéro |
Matériaux & Techniques
Volume 109, Numéro 3-4, 2021
Special Issue on ‘Overview, state of the art, recent developments and future trends regarding Hydrogen route for a green steel making process’, edited by Ismael Matino and Valentina Colla
|
|
---|---|---|
Numéro d'article | 307 | |
Nombre de pages | 28 | |
Section | Environnement − recyclage / Environment − recycling | |
DOI | https://doi.org/10.1051/mattech/2021023 | |
Publié en ligne | 24 février 2022 |
- J.-P. Birat, M. Antoine, A. Dubs, et al., Vers une sidérurgie sans carbone ?, in: Journées sidérurgiques 1992, 16 au 17 décembre, 1992; Revue de métallurgie 90, 411 (1993) [Google Scholar]
- CIRCORED Hydrogen-based reduction, METSO-OTTOTEC, https://www.mogroup.com/portfolio/circored-hydrogen-based-reduction/ [Google Scholar]
- J.-P. Birat, J. Borlée, B. Korthas, et al., ULCOS Program: A progress report in the spring of 2008, in: Scanmet III, 3rd International Conference on Process Development in Iron and Steelmaking, 8–11 June, 2008, Luleå, Sweden [Google Scholar]
- J.-P. Birat, CO2-lean steelmaking: ULCOS, other international programs and emerging concepts, in: ECCR Steel (METEC-2011), 2011 [Google Scholar]
- J.-P. Birat, The progress and status of IISI’s CO2 Breakthrough Program and EU’s ULCOS, in: CO2 Reduction Workshop, 1–2 November, Kaohsiung, Taiwan, 2007 [Google Scholar]
- Breaking through the technology barriers: Steel producers are researching new production technologies that would radically reduce their environmental footprint, Fact Sheet – Breakthrough technologies, worldsteel pamphlet, 2008 [Google Scholar]
- World steel in figures, Worldsteel, 2020 [Google Scholar]
- J.-P. Birat, Chapter 2: Materials, greenhouse gas emissions and climate change, in: Sustainable Materials Science – Environmental Metallurgy, Volume 2: Materials: Pollution and emissions, biodiversity, toxicology and ecotoxicology, economics and social roles, foresight, EDP Science, 2021, pp. 43–120 [Google Scholar]
- D. Morin, Biotechnologies dans la métallurgie extractive – Microbiologie et extraction des métaux, Technique de l’Ingénieur, (2020), M2238 v4 [Google Scholar]
- J.-P. Birat, J.P. Lorrain, Y. de Lassat, The “CO2 tool”: CO2 emissions and energy consumption of existing and breakthrough steelmaking routes, La Revue de Métallurgie-CIT, 325–336 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- J.-P. Birat, J.P. Lorrain, Y. de Lassat, The “cost tool”, La Revue de Métallurgie-CIT, 337–349 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- E. Bellevrat, Ph. Menanteau, Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling, La Revue de Métallurgie-CIT, 318–324 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- J.-P. Birat, Carbon dioxide (CO2) capture and storage technology in the iron and steel industry, in: M.M. Maroto-Valer (ed.), Developments & innovation in carbon dioxide (CO2) capture and storage technology, Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications, Woodhead Publishing, 2010, pp. 493–521 [Google Scholar]
- J.-P. Birat, The future of CO2-lean steelmaking – Technology developments towards 2050, in: Scenario 2050 for the Iron & Steel industry in Northern Europe, Luleå, 2011 [Google Scholar]
- J.-P. Birat, Hydrogen and steel, in: Seminar organized by FCH-JU, Bruxelles, 22 March, 2012 [Google Scholar]
- J.-P. Birat, F. Hanrot, G. Danloy, CO2 mitigation technologies in the steel industry: A benchmarking study based on process calculations, Stahl und Eisen 123(9), 69–72 (2003) [Google Scholar]
- K. Meijer, M. Denys, J. Lasar, et al., ULCOS: Ultra-Low CO2 Steelmaking, Ironmak. Steelmak. Process. Prod. Appl. 36(4), 249–251 (2009), https://doi.org/10.1179/174328109x439298 [CrossRef] [Google Scholar]
- J.-P. Birat, Steel Sectoral Report, Contribution to the UNIDO roadmap on CCS, in: “Global Technology Roadmap for CCS in Industry” sectoral workshop, Abu Dhabi, 30 June–1 July, 2010, Available from https://www.globalccsinstitute.com/archive/hub/publications/15671/global-technology-roadmap-ccs-industry-steel-sectoral-report.pdf [Google Scholar]
- J. Borlée, Low CO2 Steels – ULCOS Project (Ultra-Low CO2 Steelmaking), in: Proceedings of the IEA Deployment Workshop, 8–9 October 2007, Paris, France, 2007 [Google Scholar]
- J. van der Stel, M. Hattink, C. Zeilstra, et al., ULCOS top gas recycling blast furnace process (ULCOS TGRBF), European Commission report EUR 26414 EN, Research and Innovation, 2014, 53 p [Google Scholar]
- F. Patisson, O. Mirgaux, Hydrogen ironmaking: How it works?, Metals (2020), https://doi.org/10.3390/met10070922 [Google Scholar]
- A. Allanore, H. Lavelaine, G. Valentin, J.-P. Birat, F. Lapicque, Iron metal production by bulk electrolysis of iron ore particles in aqueous media, J. Electrochem. Soc. 155(9) E125–E129 (2008) [CrossRef] [Google Scholar]
- A. Allanore, H. Lavelaine, G. Valentin, et al., Observation and modelling of the reduction of hematite particles to metal in alkaline solution by electrolysis, Electrochim. Acta 55, 4007–4013 (2010) [CrossRef] [Google Scholar]
- A. Allanore, H. Lavelaine, J.-P. Birat, et al., Experimental investigation of cell design for the electrolysis of iron oxide suspensions in alkaline electrolyte, J. Appl. Electrochem., (2010) [Google Scholar]
- H. Lavelaine, et al., Iron production by electrochemical reduction of its oxide for high CO2 mitigation (IERO), RFCS Final report, EUR 2806 5 EN, 2016 [Google Scholar]
- H. Lavelaine, ΣIDERWIN partners, ΣIDERWIN project: Electrification of primary steel production for direct CO2 emission avoidance, in: METEC/ESTAD, 24–28 June, 2019, Düsseldorf, Germany, https://www.siderwin-spire.eu/sites/siderwin.drupal.pulsartecnalia.com/files/documents/SIDERWIN_project_estad2019.pdf [Google Scholar]
- Iron and Steel Technology Roadmap – Towards more sustainable steelmaking, IEA, 2020 [Google Scholar]
- J.W.K van Boggelen, H.K.A Meijer, C. Zeilstra, H. Hage, P. Broersen, HIsarna – Demonstrating low CO2 ironmaking at pilot scale, in: Steel VIA, 25–27 September, 2018, Dubai [Google Scholar]
- K. Meijer, C. Zeilstra, H. Hage, P Broersen, J. van Boggelen, Various roads to CO2 reduction with HIsarna technology, In: METEC/ESTAD, 24–28 June, 2019, Düsseldorf, Germany [Google Scholar]
- J.-P. Birat, Society, materials and the environment: The case of Steel, Metals 10(331), 36 (2020), https://doi.org/10.3390/met10030331 [Google Scholar]
- Y. Junjie, Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU, Int. J. Miner. Process. Extract. Metall. 3(2), 15–22 (2018), https://doi.org/10.11648/j.ijmpem.20180302.11 [Google Scholar]
- M. Abdul Quadera, A. Shamsuddin, S.Z. Dawal, Y. Nukman, Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) Program, Renew. Sustain. Energy Rev. 55, 537–549 (2016) [CrossRef] [Google Scholar]
- A. Toktarova, I. Karlsson, J. Rootzén, et al., Pathways for low-carbon transition of the steel industry – A Swedish case study, Energies 13, 3840 (2020), https://doi.org/10.3390/en13153840 [CrossRef] [Google Scholar]
- L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals 10, 1117 (2020), https://doi.org/10.3390/met10091117 [CrossRef] [Google Scholar]
- S. Jahanshahi, J.G. Mathieson, H Reimink, Low emission steelmaking, J. Sustain. Metall. 2, 185–190 (2016), https://doi.org/10.1007/s40831-016-0065-5 [CrossRef] [Google Scholar]
- M.C. Romanoa, R. Anantharamanb, A. Arastoc, et al., Application of advanced technologies for CO2 capture from industrial sources, GHGT-11, Energy Procedia 37, 7176–7185 (2013) [CrossRef] [Google Scholar]
- J. Tang, M.-S. Chu, F. Li, et al., Development and progress of hydrogen metallurgy, Int. J. Miner. Metall. Mater. 27(6), 713 (2020), https://doi.org/10.1007/s12613-020-2021-4 [CrossRef] [Google Scholar]
- M. Weigel, M. Fischedick, J. Marzinkowski, et al., Multicriteria analysis of primary steelmaking technologies, J. Clean. Prod. 112, 1064e1076 (2016) [CrossRef] [Google Scholar]
- M. Fischedick, J. Marzinkowski, P. Winzer, et al., Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod. 84, 563e580 (2014) [CrossRef] [Google Scholar]
- N. Alazard-Thoux, et al., (including J.-P. Birat), Decarbonization wedges, Report, 2015, ANCRE (France), 56 p (document prepared for the COP21 Meeting). [Google Scholar]
- Pathways to a low-carbon economy – Version 2 of the Global Greenhouse Gas Abatement curve, McKinsey, 2009, 190 p, https://www.mckinsey.com/∼/media/mckinsey/dotcom/client_service/sustainability/cost%20curve%20pdfs/pathways_lowcarbon_economy_version2.ashx [Google Scholar]
- C. Hoffmann, M. Van Hoey, B. Zeumer, Decarbonization challenge for steel – Hydrogen as a solution in Europe, McKinsey, 2020, 11 p (pamphlet, executive summary) [Google Scholar]
- F. Schuler, N. Voigt, T. Schmidt, et al., Steel’s contribution to a low-carbon Europe 2050: Technical and economic analysis of the sector’s CO2 abatement potential, 2013, BCG and EUROFER, 45 p, https://www.stahl-online.de/wp-content/uploads/2013/09/Schlussbericht-Studie-Low-carbon-Europe-2050_-Mai-20131.pdf [Google Scholar]
- N. Pardo, J.A. Moya, K. Vatopoulos, Prospective scenarios on energy efficiency and CO2 emissions in the EU Iron & Steel Industry – Re-edition, 2012, Joint Research Center, JRC74811, EUR 25543 EN [Google Scholar]
- Understanding the techno-economics of deploying CO2 capture technologies in an integrated steel mill, in: Iron and Steel CCS Study – Techno-Economic Integrated Steel Mill, 4 July 2013, IEAGHG, 2013 [Google Scholar]
- D. Leesonl, J. Fairclough, C. Petit, P. Fennell, A systematic review of current technology and cost for industrial carbon capture, Imperial College, Granhtam Institute, Report GR7, 2014, 81 p, https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/institute-reports-and-analytical-notes/A-Systematic-Review-of-Industrial-CCS-GR7.pdf [Google Scholar]
- M.T. Ho, A. Bustamante, D.E. Wiley, Comparison of CO2 capture economics for iron and steel mills, Int. J. Greenhouse Gas Control, 27 (2013) [Google Scholar]
- B.J. Macmullan, Le procédé “H-Iron”, Rev. Met. Paris 61(7-8), 635–638 (1964) [CrossRef] [EDP Sciences] [Google Scholar]
- Finance for installations of innovative renewable energy technology and CCS in the EU, http://www.ner300.com [Google Scholar]
- https://ec.europa.eu/clima/policies/innovation-fund_en [Google Scholar]
- Global climate roadmap: Reducing our emissions & growing our supplies to the green transition, 2021, ELKEM document [Google Scholar]
- Steel’s contribution to a low carbon future, worldsteel position paper, 2013, https://www.worldsteel.org/en/dam/jcr:11b74b34-1709-4680-bcf8-0c7044d9e0b9/Steel%2527s+Contribution+to+a+Low+Carbon+Future+.pdf [Google Scholar]
- COURSE 50 Program, https://www.course50.com/en/ [Google Scholar]
- SIDERWIN, https://www.siderwin-spire.eu [Google Scholar]
- Boston Metal, https://www.bostonmetal.com/home/ [Google Scholar]
- Projet VALORCO, VALORisation et Réduction des émissions de CO2 en Industrie, ADEME, https://www.ademe.fr/sites/default/files/assets/documents/valorco.pdf [Google Scholar]
- Projet IGAR, ADEME, https://librairie.ademe.fr/recherche-et-innovation/1123-igar.html [Google Scholar]
- Primary Energy Melter, SMS, https://www.sms-group.com/plants/all-plants/converter-steelmaking-carbon-steel/pem-primary-energy-melter [Google Scholar]
- C4U project, https://c4u-project.eu [Google Scholar]
- Oxygen blast furnace of China’s steel mill achieves 35% enriched-oxygen smelting, Pioneer, China, online on 2021-01-14, http://www.chinamet.cn/Jweb_gtyjxb_cn/EN/abstract/abstract142258.shtml [Google Scholar]
- Climate Action Report 2, 2021, ArcelorMittal document [Google Scholar]
- Elkem to test the world’s first carbon capture pilot for smelters, ELKEM website, 2021, https://www.elkem.com/media/news/article/?itemid=8F34AF42688D0767 [Google Scholar]
- Production et consommation d’hydrogène aujourd’hui, Memento de l’hydrogène, AFHYPAC, Fiche 1.3, 2016, and 2019 data [Google Scholar]
- J.-P. Birat, Decarbonising steel – An international perspective, in: IEA-CNREC, Renewable Energy for Industry and Fuels Workshop, 可再生能源在工业和燃料中的应用国际研讨会, 22–23 January, 2019, Beijing [Google Scholar]
- N.M.A. Huijts, C.J.H. Midden, A.L. Meijnders, Social acceptance of carbon dioxide storage, Energy Policy 35, 2780–2789 (2007) [CrossRef] [Google Scholar]
- R. Bhandari, C.A. Trudewind, P. Zap, Life cycle assessment of hydrogen production methods – A review, STE Research Report, Jülich Froschungszentrum, 2012 [Google Scholar]
- A. Simons, C. Bauer, Chapter 2: Life cycle assessment of hydrogen production (pp. 13–57), in: A. Wokaun, E. Wilhelm (eds.), Transition to Hydrogen, Cambridge University Press, 2011, https://doi.org/10.1017/CBO9781139018036.006 [CrossRef] [Google Scholar]
- T. Wichl, W. Lueke, G. Deerber, et al., Carbon2Chem®-CCU as a step toward a circular economy, Front. Energy Res., (2020), https://doi.org/10.3389/fenrg.2019.00162 [Google Scholar]
- MIDREX NG, MIDREX, https://www.midrex.com/technology/midrex-process/midrex-ng/ [Google Scholar]
- ENERGIRON Direct Reduction processes, Tenova & Danieli, https://www.energiron.com [Google Scholar]
- HYBRIT on LKAB’s websites, https://www.ssab.fr/products/brands/greencoat/sustainable-building-with-greencoat/hybrit-fossil-free-steel, https://www.lkab.com/en/about-lkab/technological-and-process-development/research-collaborations/hybrit-for-fossil-free-steel/ [Google Scholar]
- HYBRIT on SSAB’s website, https://www.ssab.com/company/sustainability/sustainable-operations/hybrit [Google Scholar]
- HYBRIT on Vattenfall’s website, https://www.vattenfall.fr/le-mag-energie/hybrit-production-acier-decarbone [Google Scholar]
- J.-P. Birat, P. Criqui, Article « Décarbonation de la sidérurgie », in: Dictionnaire historique de la sidérurgie, Édition de Provence (To be published in 2022) [Google Scholar]
- Green Steel for Europe – A project run by ESTEP, Bruxelles, https://www.estep.eu/green-steel-for-europe/ [Google Scholar]
- Que faut-il retenir de l’ordonnance sur l’hydrogène ? 18/02/2021, AFHYPAC, https://www.afhypac.org/presse/que-faut-il-retenir-de-l-ordonnance-sur-l-hydrogene-2953/ [Google Scholar]
- Modes de production du dihydrogène, CEA, découvrir et comprendre, https://www.cea.fr/comprendre/Pages/energies/renouvelables/hydrogene.aspx?Type=Chapitre&numero=3 [Google Scholar]
- I. Moretti, L’hydrogène naturel : curiosité géologique ou source d’énergie majeure dans le futur ? CDE, Connaissance des énergies, 22 mai 2020, https://www.connaissancedesenergies.org/tribune-actualite-energies/lhydrogene-naturel-curiosite-geologique-ou-source-denergie-majeure-dans-le-futur [Google Scholar]
- Bringing fusion to the US grid, US National Academies, 2021, https://www.nap.edu/read/25991/chapter/1 [Google Scholar]
- SPARC Project, MIT, https://news.mit.edu/2020/physics-fusion-studies-0929 [Google Scholar]
- Electricity Map, https://www.electricitymap.org/map [Google Scholar]
- European Environment Agency, Greenhouse gas emission intensity of electricity generation, https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-6#tab-googlechartid_googlechartid_googlechartid_googlechartid_chart_11111 [Google Scholar]
- S. Huet, Électricité et CO2 – le tableau européen, Le Monde, (2019), https://www.lemonde.fr/blog/huet/2019/05/06/electricite-et-co2-le-tableau-europeen/ [Google Scholar]
- B. Paolo, H. Thomas, Tradable certificates for renewable electricity and energy savings, Energy Policy 34, 212–222 (2005) [Google Scholar]
- X. Yu, Z. Dong, D. Zhoua, et al., Integration of tradable green certificates trading and carbon emissions trading: How will Chinese power industry do? J. Clean. Prod. 279, (2021) [Google Scholar]
- J. Canton, A. Johannesson Lindén, Support schemes for renewable electricity in the EU, Economic Papers 408, (2010), KC-AI-10-408-EN-N, http://ec.europa.eu/economy_finance/publications/economic/index_en.htm [Google Scholar]
- A. Quinet (Rapport de la commission présidée par), La valeur de l’action pour le climat – Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques, France Stratégie, 2019 [Google Scholar]
- N.H. Stern, The economics of climate change: The Stern review, Cambridge University Press, Cambridge, UK, 2007 [CrossRef] [Google Scholar]
- P. Criqui (Président), S. Crémel, A. Pommeret (Rapporteurs), Les coûts d’abattement, Partie 1, Méthodologie, France Stratégie, 2021, 66 p, https://www.strategie.gouv.fr/publications/couts-dabattement [Google Scholar]
- P. Criqui (Président), S. Crémel, A. Pommeret (Rapporteurs), Les coûts d’abattement, Partie 2, Transport, France Stratégie, 2021, 66 p, https://www.strategie.gouv.fr/publications/couts-dabattement [Google Scholar]
- J. Armijo, C. Philibert, Flexible production of green hydrogen and ammonia from variable solar and wind energy. Case study of Chile and Argentina, Int. J. Hydrogen Energy, (2019) [Google Scholar]
- Climate Action in Europe, Our carbon emissions reduction roadmap: 30% by 2030 and carbon neutral by 2050, ArcelorMittal, 2020, https://corporate-media.arcelormittal.com/media/yw1gnzfo/climate-action-in-europe.pdf [Google Scholar]
- LKAB: Today’s waste becomes tomorrow’s resources, The ReeMAP Project, https://ree-map.com/about-reemap/reemap-industrial-park/ [Google Scholar]
- Stratégie Michelin, https://www.rubbernews.com/sustainability/video-michelin-driving-100-sustainable-tires-2050 [Google Scholar]
- J.-P. Birat, Quelle place pour l’acier et la sidérurgie dans les sociétés post-modernes, etc… ? Récits et storytelling, in: Journée scientifique et amicale en l’honneur de Denis Ablitzer, 3 septembre, 2014, École des Mines de Nancy, Nancy [Google Scholar]
- A. Mah, Future-proofing capitalism: The paradox of the circular economy for plastics, Glob. Environ. Politics 21(2), (2021), https://doi.org/10.1162/glep_a_00594 [Google Scholar]
- S. Hosokai, Y. Kasiwaya, K. Matsui, et al., Ironmaking with ammonia at low temperature, Environ. Sci. Technol. 45, 821–826 (2011) [CrossRef] [Google Scholar]
- N. Yasuda, Y. Mochizuki, N. Tsubouchi, et al., Reduction and nitriding behavior of hematite with ammonia, ISIJ Int. 55(4), 736–741 (2015) [CrossRef] [Google Scholar]
- J.-P. Birat, A. Carvallo Aceves, Territorial sustainability footprint, Revue de Métallurgie 109, 323–331 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
- D. Gielen, D. Saygin, E. Taibi, J.-P. Birat Renewables-based decarbonization and relocation of iron and steel making: A case study, J. Ind. Ecol., 1–13 (2020), https://doi.org/10.1111/jiec.12997 [Google Scholar]
- POSCO to carry out Green Hydrogen project with Fortescu Metal Group, 4/01/2021, https://fuelcellsworks.com/news/posco-to-carry-out-green-hydrogen-project-with-fortescue-metal-group/ [Google Scholar]
- Kawasaki Heavy aims to duplicate LNG supply chain with hydrogen, Reuters, 26/01/2021, https://www.reuters.com/article/us-japan-hydrogen-kawasaki-heavy-idUSKBN29V0SW [Google Scholar]
- J.-P. Birat, The greening of steel: The blast furnace in the garden, in: International Steelmaking Meeting, Charlotte, Congress Dinner Keynote Lecture, 9–12 May, 2005 [Google Scholar]
- J.-P. Birat, How to tell the story of change and transition of the energy, ecological and societal systems, Matériaux & Techniques 108, 502 (2020), https://doi.org/10.1051/mattech/2021005 [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.