Matériaux & Techniques
Volume 109, Number 3-4, 2021
Special Issue on ‘Overview, state of the art, recent developments and future trends regarding Hydrogen route for a green steel making process’, edited by Ismael Matino and Valentina Colla
Article Number 307
Number of page(s) 28
Section Environnement − recyclage / Environment − recycling
Published online 24 February 2022
  1. J.-P. Birat, M. Antoine, A. Dubs, et al., Vers une sidérurgie sans carbone ?, in: Journées sidérurgiques 1992, 16 au 17 décembre, 1992; Revue de métallurgie 90, 411 (1993) [Google Scholar]
  2. CIRCORED Hydrogen-based reduction, METSO-OTTOTEC, [Google Scholar]
  3. J.-P. Birat, J. Borlée, B. Korthas, et al., ULCOS Program: A progress report in the spring of 2008, in: Scanmet III, 3rd International Conference on Process Development in Iron and Steelmaking, 8–11 June, 2008, Luleå, Sweden [Google Scholar]
  4. J.-P. Birat, CO2-lean steelmaking: ULCOS, other international programs and emerging concepts, in: ECCR Steel (METEC-2011), 2011 [Google Scholar]
  5. J.-P. Birat, The progress and status of IISI’s CO2 Breakthrough Program and EU’s ULCOS, in: CO2 Reduction Workshop, 1–2 November, Kaohsiung, Taiwan, 2007 [Google Scholar]
  6. Breaking through the technology barriers: Steel producers are researching new production technologies that would radically reduce their environmental footprint, Fact Sheet – Breakthrough technologies, worldsteel pamphlet, 2008 [Google Scholar]
  7. World steel in figures, Worldsteel, 2020 [Google Scholar]
  8. J.-P. Birat, Chapter 2: Materials, greenhouse gas emissions and climate change, in: Sustainable Materials Science – Environmental Metallurgy, Volume 2: Materials: Pollution and emissions, biodiversity, toxicology and ecotoxicology, economics and social roles, foresight, EDP Science, 2021, pp. 43–120 [Google Scholar]
  9. D. Morin, Biotechnologies dans la métallurgie extractive – Microbiologie et extraction des métaux, Technique de l’Ingénieur, (2020), M2238 v4 [Google Scholar]
  10. J.-P. Birat, J.P. Lorrain, Y. de Lassat, The “CO2 tool”: CO2 emissions and energy consumption of existing and breakthrough steelmaking routes, La Revue de Métallurgie-CIT, 325–336 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  11. J.-P. Birat, J.P. Lorrain, Y. de Lassat, The “cost tool”, La Revue de Métallurgie-CIT, 337–349 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  12. E. Bellevrat, Ph. Menanteau, Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling, La Revue de Métallurgie-CIT, 318–324 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
  13. J.-P. Birat, Carbon dioxide (CO2) capture and storage technology in the iron and steel industry, in: M.M. Maroto-Valer (ed.), Developments & innovation in carbon dioxide (CO2) capture and storage technology, Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications, Woodhead Publishing, 2010, pp. 493–521 [Google Scholar]
  14. J.-P. Birat, The future of CO2-lean steelmaking – Technology developments towards 2050, in: Scenario 2050 for the Iron & Steel industry in Northern Europe, Luleå, 2011 [Google Scholar]
  15. J.-P. Birat, Hydrogen and steel, in: Seminar organized by FCH-JU, Bruxelles, 22 March, 2012 [Google Scholar]
  16. J.-P. Birat, F. Hanrot, G. Danloy, CO2 mitigation technologies in the steel industry: A benchmarking study based on process calculations, Stahl und Eisen 123(9), 69–72 (2003) [Google Scholar]
  17. K. Meijer, M. Denys, J. Lasar, et al., ULCOS: Ultra-Low CO2 Steelmaking, Ironmak. Steelmak. Process. Prod. Appl. 36(4), 249–251 (2009), [CrossRef] [Google Scholar]
  18. J.-P. Birat, Steel Sectoral Report, Contribution to the UNIDO roadmap on CCS, in: “Global Technology Roadmap for CCS in Industry” sectoral workshop, Abu Dhabi, 30 June–1 July, 2010, Available from [Google Scholar]
  19. J. Borlée, Low CO2 Steels – ULCOS Project (Ultra-Low CO2 Steelmaking), in: Proceedings of the IEA Deployment Workshop, 8–9 October 2007, Paris, France, 2007 [Google Scholar]
  20. J. van der Stel, M. Hattink, C. Zeilstra, et al., ULCOS top gas recycling blast furnace process (ULCOS TGRBF), European Commission report EUR 26414 EN, Research and Innovation, 2014, 53 p [Google Scholar]
  21. F. Patisson, O. Mirgaux, Hydrogen ironmaking: How it works?, Metals (2020), [Google Scholar]
  22. A. Allanore, H. Lavelaine, G. Valentin, J.-P. Birat, F. Lapicque, Iron metal production by bulk electrolysis of iron ore particles in aqueous media, J. Electrochem. Soc. 155(9) E125–E129 (2008) [CrossRef] [Google Scholar]
  23. A. Allanore, H. Lavelaine, G. Valentin, et al., Observation and modelling of the reduction of hematite particles to metal in alkaline solution by electrolysis, Electrochim. Acta 55, 4007–4013 (2010) [CrossRef] [Google Scholar]
  24. A. Allanore, H. Lavelaine, J.-P. Birat, et al., Experimental investigation of cell design for the electrolysis of iron oxide suspensions in alkaline electrolyte, J. Appl. Electrochem., (2010) [Google Scholar]
  25. H. Lavelaine, et al., Iron production by electrochemical reduction of its oxide for high CO2 mitigation (IERO), RFCS Final report, EUR 2806 5 EN, 2016 [Google Scholar]
  26. H. Lavelaine, ΣIDERWIN partners, ΣIDERWIN project: Electrification of primary steel production for direct CO2 emission avoidance, in: METEC/ESTAD, 24–28 June, 2019, Düsseldorf, Germany, [Google Scholar]
  27. Iron and Steel Technology Roadmap – Towards more sustainable steelmaking, IEA, 2020 [Google Scholar]
  28. J.W.K van Boggelen, H.K.A Meijer, C. Zeilstra, H. Hage, P. Broersen, HIsarna – Demonstrating low CO2 ironmaking at pilot scale, in: Steel VIA, 25–27 September, 2018, Dubai [Google Scholar]
  29. K. Meijer, C. Zeilstra, H. Hage, P Broersen, J. van Boggelen, Various roads to CO2 reduction with HIsarna technology, In: METEC/ESTAD, 24–28 June, 2019, Düsseldorf, Germany [Google Scholar]
  30. J.-P. Birat, Society, materials and the environment: The case of Steel, Metals 10(331), 36 (2020), [Google Scholar]
  31. Y. Junjie, Progress and future of breakthrough low-carbon steelmaking technology (ULCOS) of EU, Int. J. Miner. Process. Extract. Metall. 3(2), 15–22 (2018), [Google Scholar]
  32. M. Abdul Quadera, A. Shamsuddin, S.Z. Dawal, Y. Nukman, Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) Program, Renew. Sustain. Energy Rev. 55, 537–549 (2016) [CrossRef] [Google Scholar]
  33. A. Toktarova, I. Karlsson, J. Rootzén, et al., Pathways for low-carbon transition of the steel industry – A Swedish case study, Energies 13, 3840 (2020), [CrossRef] [Google Scholar]
  34. L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals 10, 1117 (2020), [CrossRef] [Google Scholar]
  35. S. Jahanshahi, J.G. Mathieson, H Reimink, Low emission steelmaking, J. Sustain. Metall. 2, 185–190 (2016), [CrossRef] [Google Scholar]
  36. M.C. Romanoa, R. Anantharamanb, A. Arastoc, et al., Application of advanced technologies for CO2 capture from industrial sources, GHGT-11, Energy Procedia 37, 7176–7185 (2013) [CrossRef] [Google Scholar]
  37. J. Tang, M.-S. Chu, F. Li, et al., Development and progress of hydrogen metallurgy, Int. J. Miner. Metall. Mater. 27(6), 713 (2020), [CrossRef] [Google Scholar]
  38. M. Weigel, M. Fischedick, J. Marzinkowski, et al., Multicriteria analysis of primary steelmaking technologies, J. Clean. Prod. 112, 1064e1076 (2016) [CrossRef] [Google Scholar]
  39. M. Fischedick, J. Marzinkowski, P. Winzer, et al., Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod. 84, 563e580 (2014) [CrossRef] [Google Scholar]
  40. N. Alazard-Thoux, et al., (including J.-P. Birat), Decarbonization wedges, Report, 2015, ANCRE (France), 56 p (document prepared for the COP21 Meeting). [Google Scholar]
  41. Pathways to a low-carbon economy – Version 2 of the Global Greenhouse Gas Abatement curve, McKinsey, 2009, 190 p,∼/media/mckinsey/dotcom/client_service/sustainability/cost%20curve%20pdfs/pathways_lowcarbon_economy_version2.ashx [Google Scholar]
  42. C. Hoffmann, M. Van Hoey, B. Zeumer, Decarbonization challenge for steel – Hydrogen as a solution in Europe, McKinsey, 2020, 11 p (pamphlet, executive summary) [Google Scholar]
  43. F. Schuler, N. Voigt, T. Schmidt, et al., Steel’s contribution to a low-carbon Europe 2050: Technical and economic analysis of the sector’s CO2 abatement potential, 2013, BCG and EUROFER, 45 p, [Google Scholar]
  44. N. Pardo, J.A. Moya, K. Vatopoulos, Prospective scenarios on energy efficiency and CO2 emissions in the EU Iron & Steel Industry – Re-edition, 2012, Joint Research Center, JRC74811, EUR 25543 EN [Google Scholar]
  45. Understanding the techno-economics of deploying CO2 capture technologies in an integrated steel mill, in: Iron and Steel CCS Study – Techno-Economic Integrated Steel Mill, 4 July 2013, IEAGHG, 2013 [Google Scholar]
  46. D. Leesonl, J. Fairclough, C. Petit, P. Fennell, A systematic review of current technology and cost for industrial carbon capture, Imperial College, Granhtam Institute, Report GR7, 2014, 81 p, [Google Scholar]
  47. M.T. Ho, A. Bustamante, D.E. Wiley, Comparison of CO2 capture economics for iron and steel mills, Int. J. Greenhouse Gas Control, 27 (2013) [Google Scholar]
  48. B.J. Macmullan, Le procédé “H-Iron”, Rev. Met. Paris 61(7-8), 635–638 (1964) [CrossRef] [EDP Sciences] [Google Scholar]
  49. Finance for installations of innovative renewable energy technology and CCS in the EU, [Google Scholar]
  50. [Google Scholar]
  51. Global climate roadmap: Reducing our emissions & growing our supplies to the green transition, 2021, ELKEM document [Google Scholar]
  52. Steel’s contribution to a low carbon future, worldsteel position paper, 2013, [Google Scholar]
  53. COURSE 50 Program, [Google Scholar]
  54. SIDERWIN, [Google Scholar]
  55. Boston Metal, [Google Scholar]
  56. Projet VALORCO, VALORisation et Réduction des émissions de CO2 en Industrie, ADEME, [Google Scholar]
  57. Projet IGAR, ADEME, [Google Scholar]
  58. Primary Energy Melter, SMS, [Google Scholar]
  59. C4U project, [Google Scholar]
  60. Oxygen blast furnace of China’s steel mill achieves 35% enriched-oxygen smelting, Pioneer, China, online on 2021-01-14, [Google Scholar]
  61. Climate Action Report 2, 2021, ArcelorMittal document [Google Scholar]
  62. Elkem to test the world’s first carbon capture pilot for smelters, ELKEM website, 2021, [Google Scholar]
  63. Production et consommation d’hydrogène aujourd’hui, Memento de l’hydrogène, AFHYPAC, Fiche 1.3, 2016, and 2019 data [Google Scholar]
  64. J.-P. Birat, Decarbonising steel – An international perspective, in: IEA-CNREC, Renewable Energy for Industry and Fuels Workshop, 可再生能源在工业和燃料中的应用国际研讨会, 22–23 January, 2019, Beijing [Google Scholar]
  65. N.M.A. Huijts, C.J.H. Midden, A.L. Meijnders, Social acceptance of carbon dioxide storage, Energy Policy 35, 2780–2789 (2007) [CrossRef] [Google Scholar]
  66. R. Bhandari, C.A. Trudewind, P. Zap, Life cycle assessment of hydrogen production methods – A review, STE Research Report, Jülich Froschungszentrum, 2012 [Google Scholar]
  67. A. Simons, C. Bauer, Chapter 2: Life cycle assessment of hydrogen production (pp. 13–57), in: A. Wokaun, E. Wilhelm (eds.), Transition to Hydrogen, Cambridge University Press, 2011, [CrossRef] [Google Scholar]
  68. T. Wichl, W. Lueke, G. Deerber, et al., Carbon2Chem®-CCU as a step toward a circular economy, Front. Energy Res., (2020), [Google Scholar]
  69. MIDREX NG, MIDREX, [Google Scholar]
  70. ENERGIRON Direct Reduction processes, Tenova & Danieli, [Google Scholar]
  71. HYBRIT on LKAB’s websites,, [Google Scholar]
  72. HYBRIT on SSAB’s website, [Google Scholar]
  73. HYBRIT on Vattenfall’s website, [Google Scholar]
  74. J.-P. Birat, P. Criqui, Article « Décarbonation de la sidérurgie », in: Dictionnaire historique de la sidérurgie, Édition de Provence (To be published in 2022) [Google Scholar]
  75. Green Steel for Europe – A project run by ESTEP, Bruxelles, [Google Scholar]
  76. Que faut-il retenir de l’ordonnance sur l’hydrogène ? 18/02/2021, AFHYPAC, [Google Scholar]
  77. Modes de production du dihydrogène, CEA, découvrir et comprendre, [Google Scholar]
  78. I. Moretti, L’hydrogène naturel : curiosité géologique ou source d’énergie majeure dans le futur ? CDE, Connaissance des énergies, 22 mai 2020, [Google Scholar]
  79. Bringing fusion to the US grid, US National Academies, 2021, [Google Scholar]
  80. SPARC Project, MIT, [Google Scholar]
  81. Electricity Map, [Google Scholar]
  82. European Environment Agency, Greenhouse gas emission intensity of electricity generation, [Google Scholar]
  83. S. Huet, Électricité et CO2 – le tableau européen, Le Monde, (2019), [Google Scholar]
  84. B. Paolo, H. Thomas, Tradable certificates for renewable electricity and energy savings, Energy Policy 34, 212–222 (2005) [Google Scholar]
  85. X. Yu, Z. Dong, D. Zhoua, et al., Integration of tradable green certificates trading and carbon emissions trading: How will Chinese power industry do? J. Clean. Prod. 279, (2021) [Google Scholar]
  86. J. Canton, A. Johannesson Lindén, Support schemes for renewable electricity in the EU, Economic Papers 408, (2010), KC-AI-10-408-EN-N, [Google Scholar]
  87. A. Quinet (Rapport de la commission présidée par), La valeur de l’action pour le climat – Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques, France Stratégie, 2019 [Google Scholar]
  88. N.H. Stern, The economics of climate change: The Stern review, Cambridge University Press, Cambridge, UK, 2007 [CrossRef] [Google Scholar]
  89. P. Criqui (Président), S. Crémel, A. Pommeret (Rapporteurs), Les coûts d’abattement, Partie 1, Méthodologie, France Stratégie, 2021, 66 p, [Google Scholar]
  90. P. Criqui (Président), S. Crémel, A. Pommeret (Rapporteurs), Les coûts d’abattement, Partie 2, Transport, France Stratégie, 2021, 66 p, [Google Scholar]
  91. J. Armijo, C. Philibert, Flexible production of green hydrogen and ammonia from variable solar and wind energy. Case study of Chile and Argentina, Int. J. Hydrogen Energy, (2019) [Google Scholar]
  92. Climate Action in Europe, Our carbon emissions reduction roadmap: 30% by 2030 and carbon neutral by 2050, ArcelorMittal, 2020, [Google Scholar]
  93. LKAB: Today’s waste becomes tomorrow’s resources, The ReeMAP Project, [Google Scholar]
  94. Stratégie Michelin, [Google Scholar]
  95. J.-P. Birat, Quelle place pour l’acier et la sidérurgie dans les sociétés post-modernes, etc… ? Récits et storytelling, in: Journée scientifique et amicale en l’honneur de Denis Ablitzer, 3 septembre, 2014, École des Mines de Nancy, Nancy [Google Scholar]
  96. A. Mah, Future-proofing capitalism: The paradox of the circular economy for plastics, Glob. Environ. Politics 21(2), (2021), [Google Scholar]
  97. S. Hosokai, Y. Kasiwaya, K. Matsui, et al., Ironmaking with ammonia at low temperature, Environ. Sci. Technol. 45, 821–826 (2011) [CrossRef] [Google Scholar]
  98. N. Yasuda, Y. Mochizuki, N. Tsubouchi, et al., Reduction and nitriding behavior of hematite with ammonia, ISIJ Int. 55(4), 736–741 (2015) [CrossRef] [Google Scholar]
  99. J.-P. Birat, A. Carvallo Aceves, Territorial sustainability footprint, Revue de Métallurgie 109, 323–331 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  100. D. Gielen, D. Saygin, E. Taibi, J.-P. Birat Renewables-based decarbonization and relocation of iron and steel making: A case study, J. Ind. Ecol., 1–13 (2020), [Google Scholar]
  101. POSCO to carry out Green Hydrogen project with Fortescu Metal Group, 4/01/2021, [Google Scholar]
  102. Kawasaki Heavy aims to duplicate LNG supply chain with hydrogen, Reuters, 26/01/2021, [Google Scholar]
  103. J.-P. Birat, The greening of steel: The blast furnace in the garden, in: International Steelmaking Meeting, Charlotte, Congress Dinner Keynote Lecture, 9–12 May, 2005 [Google Scholar]
  104. J.-P. Birat, How to tell the story of change and transition of the energy, ecological and societal systems, Matériaux & Techniques 108, 502 (2020), [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.