Issue
Matériaux & Techniques
Volume 109, Number 3-4, 2021
Special Issue on ‘Overview, state of the art, recent developments and future trends regarding Hydrogen route for a green steel making process’, edited by Ismael Matino and Valentina Colla
Article Number 308
Number of page(s) 13
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2022009
Published online 04 March 2022
  1. European Commission, What is the European Green Deal?, 2019, https://ec.europa.eu/commission/presscorner/api/files/attachment/859152/What_is_the_European_Green_Deal_en.pdf.pdf [Google Scholar]
  2. European Commission, Towards competitive and clean European steel, 2021, https://ec.europa.eu/info/sites/default/files/swd-competitive-clean-european-steel_en.pdf [Google Scholar]
  3. G.F. Porzio, B. Fornai, A. Amato, et al., Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [Google Scholar]
  4. G.F. Porzio, G. Nastasi, V. Colla, et al., Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork, Appl. Energy 136, 1085–1097 (2014) [CrossRef] [Google Scholar]
  5. A. Maddaloni, R. Matino, I. Matino, et al., A quadratic programming model for the optimization of off-gas networks in integrated steelworks, Matériaux & Techniques 107(5), 502 (2019) [Google Scholar]
  6. V. Colla, I. Matino, S. Dettori, et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux & Techniques 107(1), 104 (2019) [Google Scholar]
  7. D.C. Rosenfeld, H. Böhm, J. Lindorfer, et al., Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study, Renew. Energy 147, 1511–1524 (2020) [CrossRef] [Google Scholar]
  8. S.E. Lyke, R.H. Moore, Chemical production from industrial by-product gases (No. PNL-3753), Battelle Pacific Northwest Labs., Richland, WA (USA), 1981 [CrossRef] [Google Scholar]
  9. J. Cordier, B. Dussart, Ammonia and methanol production-how savings can be made, Pet. Tech. 307, (1984) [Google Scholar]
  10. S. Kim, J. Kim, The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis, Fuel 266, 117093 (2020) [CrossRef] [Google Scholar]
  11. L. Deng, T.A. Adams II, Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manage. 204, 112315 (2020) [CrossRef] [Google Scholar]
  12. D. Kim, J. Han, Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst, Energy 198, 117355 (2020) [CrossRef] [Google Scholar]
  13. F. Patisson, O. Mirgaux, Hydrogen ironmaking: How it works, Metals 10(7), 922 (2020) [CrossRef] [Google Scholar]
  14. J. Tang, M.S. Chu, F. Li, et al., Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater. 27(6), 713–723 (2020) [CrossRef] [Google Scholar]
  15. T. Buergler, J. Prammer, Hydrogen steelmaking: Technology options and R&D projects, BHM Berg-und Hüttenmännische Monatshefte 164(11), 447–451 (2019) [CrossRef] [Google Scholar]
  16. M. Pei, M. Petäjäniemi, A. Regnell, et al., Toward a fossil free future with hybrit: Development of iron and steelmaking technology in Sweden and Finland, Metals 10(7), 972 (2020) [Google Scholar]
  17. F. Cirilli, G. Jochler, T. Boniotti, et al., Effects of H2 combustion on scale growth and steel surface quality in reheating furnaces, in: ESTEP H2GreenSteel Web-Workshop, Virtual, 7, 21, 28 May 2021 and 11 June 2021, 2021 [Google Scholar]
  18. J. von Schéele, Technologies for use of hydrogen in melting, heating and reheating, in: ESTEP H2GreenSteel Web-Workshop, Virtual, 7, 21, 28 May 2021 and 11 June 2021, 2021 [Google Scholar]
  19. A. Zaccara, A. Petrucciani, I. Matino, et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10(11), 1535 (2020) [CrossRef] [Google Scholar]
  20. M. Bampaou, K. Panopoulos, P. Seferlis, et al., Integration of renewable hydrogen production in steelworks off-gases for the synthesis of methanol and methane, Energies 14(10), 2904 (2021) [CrossRef] [Google Scholar]
  21. J. Gao, Y. Wang, Y. Ping, et al., A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2(6), 2358–2368 (2012) [CrossRef] [Google Scholar]
  22. G.H. Graaf, J.G.M. Winkelman, E.J. Stamhuis, et al., Kinetics of the three phase methanol synthesis, in: Tenth International Symposium on Chemical Reaction Engineering, Pergamon, pp. 2161–2168, 1988 [Google Scholar]
  23. S. Dettori, I. Matino, V. Colla, et al., A deep learning-based approach for forecasting off-gas production and consumption in the blast furnace, Neural Comput. Applicat. 1–13 (2021) [Google Scholar]
  24. I. Matino, S. Dettori, V. Colla, et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, 113578 (2019) [CrossRef] [Google Scholar]
  25. V. Colla, I. Matino, S. Dettori, et al., Reservoir computing approaches applied to energy management in industry, in: International Conference on Engineering Applications of Neural Networks, Springer, Cham, pp. 66–79, 2019 [Google Scholar]
  26. M.C. Ozturk, D. Xu, J.C. Principe, Analysis and design of echo state networks, Neural Comput. 19(1), 111–138 (2007) [CrossRef] [Google Scholar]
  27. A. Hauser, M. Weitzer, S. Gunsch, et al., Dynamic hydrogen-intensified methanation of synthetic by-product gases from steelworks, Fuel Process. Technol. 217, 106701 (2021) [CrossRef] [Google Scholar]
  28. A. Hauser, J. Karl, Dynamic methanation of by-product gases from integrated steelworks, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  29. P. Wolf-Zöllner, A. Krammer, A. Medved, et al., Dynamic methanation of by-product gases from integrated steelworks, in: 14th Mediterranean Congress of Chemical Engineering, Virtual, 16–20 November 2020 [Google Scholar]
  30. P. Wolf-Zöllner, A. Krammer, A. Medved, et al., Dynamic methanation of by-product gases from integrated steelworks, in: International Conference on Polygeneration Strategies, Vienna, 18–19 November 2019 [Google Scholar]
  31. P. Wolf-Zöllner, Innovative reactor design and dynamic methanation at MUL, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  32. K.L. Fischer, H. Freund, Intensification of load flexible fixed bed reactors by optimal design of staged reactor setups, Chem. Eng. Process. –Process Intensif. 159, 108183 (2021) [CrossRef] [Google Scholar]
  33. K.L. Fischer, H. Freund, On the optimal design of load flexible fixed bed reactors: Integration of dynamics into the design problem, Chem. Eng. J. 393, 124722 (2020) [CrossRef] [Google Scholar]
  34. T. Oelmann, T. Schuhmann, M. Gorny, et al., A new reactor concept for conversion of CO2 to methanol, in: DGMK Conference 2020: The Future of Chemicals and Fuels – Feedstock and Process Technologies, Virtual, 08 October 2020 [Google Scholar]
  35. S. Haag, T. Renner, C. Drosdzol, et al., Innovative concept for methanol synthesis using unconventional gases as feedstock, in: 5th Nuremberg Workshop on Methanation and 2nd Generation Fuels, Virtual, 27–28 May 2021, https://www.i3upgrade.eu/publications/proceedings-from-5th-nuremberg-workshop-on-methanation-and-2nd-generation-fuels/ [Google Scholar]
  36. M. Su, Z. Zhang, Y. Zhu, et al., Data-driven natural gas spot price forecasting with least squares regression boosting algorithm, Energies 12(6), 1094 (2019) [Google Scholar]
  37. G.S. Atsalakis, Using computational intelligence to forecast carbon prices, Appl. Soft Comput. 43, 107–116 (2016) [CrossRef] [Google Scholar]
  38. B. Zhu, A novel multiscale ensemble carbon price prediction model integrating empirical mode decomposition, genetic algorithm and artificial neural network, Energies 5(2), 355–370 (2012) [CrossRef] [Google Scholar]
  39. L. Jiang, P. Wu, International carbon market price forecasting using an integration model based on SVR, in: International Conference on Engineering Management, Engineering Education and Information Technology, 2015 [Google Scholar]
  40. X. Fan, S. Li, L. Tian, Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model, Exp. Syst. Appl. 42(8), 3945–3952 (2015) [CrossRef] [Google Scholar]
  41. M. Ellis, H. Durand, P.D. Christofides, A tutorial review of economic model predictive control methods, J. Process Control 24(8), 1156–1178 (2014) [CrossRef] [Google Scholar]
  42. D.P. De Silva, J.L.F. Salles, J.F. Fardin, et al., Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data, Appl. Energy 278, 115581 (2020) [CrossRef] [Google Scholar]
  43. J. Lofberg, YALMIP: A tool box for modeling and optimization in MATLAB, in: 2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508), IEEE, pp. 284–289, 2004 [Google Scholar]
  44. GUROBI Optimization, https://www.gurobi.com/ [Google Scholar]
  45. Worldsteel Association, Climate change and the production of iron and steel, 2020, https://worldsteel.org/wp-content/uploads/Climate-change-and-the-production-of-iron-and-steel.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.