Issue
Matériaux & Techniques
Volume 111, Number 2, 2023
Special Issue on ‘The role of Hydrogen in the transition to a sustainable steelmaking process’; edited by Ismael Matino and Valentina Colla
Article Number 204
Number of page(s) 14
Section Environmental issues of materials and material production
DOI https://doi.org/10.1051/mattech/2023025
Published online 28 August 2023
  1. K. Abbass, M.Z. Qasim, H. Song et al., A review of the global climate change impacts, adaptation, and sustainable mitigation measures, Environ. Sci. Pollut. Res. 29(28), 42539–42559 (2022) [CrossRef] [Google Scholar]
  2. S.J. Davis, N.S. Lewis, M. Shaner et al., Net-zero emissions energy systems, Science 360 (6396), eaas9793 (2018) [CrossRef] [Google Scholar]
  3. European Commission, Towards competitive and clean European steel, 2021, https://ec.europa.eu/info/sites/default/files/swd-competitive-clean-european-steel_en.pdf [Google Scholar]
  4. World Steel Association, Climate change and the production of iron and steel, 2021, https://worldsteel.org/wp-content/uploads/Climate-change-production-of-iron-and-steel-2021.pdf [Google Scholar]
  5. A. Ito, B. Langefeld, N. Götz, The future of steelmaking. How the European steel industry can achieve carbon neutrality, Roland Berger GMBH, 2020 [Google Scholar]
  6. T. Kempken, T. Hauck, C. Wang et al., Decarbonisation Pathways 2030-2050 (Deliverable 1.7), GreenSteel for Europe, 2021 [Google Scholar]
  7. T. Buergler, J. Prammer, Hydrogen steelmaking: Technology options and R&D projects, BHM Berg-und Hüttenmännische Monatshefte 164 (11), 447–451 (2019) [CrossRef] [Google Scholar]
  8. A. Della Rocca, D. Astesiano, E. Malfa, Rolling mill decarbonization: Tenova SmartBurners with 100% hydrogen, Matériaux & Techniques 109 (3-4), 309 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  9. I. Matino, S. Dettori, A. Zaccara et al., Hydrogen role in the valorization of integrated steelworks process off-gases through methane and methanol syntheses, Matériaux & Techniques 109 (3-4), 308 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  10. V. Colla, I. Matino, S. Dettori et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux Tech. 107 (1), 104 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Maddaloni, R. Matino, I. Matino et al., A quadratic programming model for the optimization of off-gas networks in integrated steelworks, Matériaux Tech. 107(5), 502 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  12. I. Matino, S. Dettori, V. Colla et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, 113578 (2019) [CrossRef] [Google Scholar]
  13. M.E. Boot-Handford, J.C. Abanades, E.J. Anthony et al., Carbon capture and storage update, Energy Environ. Sci. 7 (1), 130–189 (2014) [CrossRef] [Google Scholar]
  14. K. He, L. Wang, X. Li, Review of the energy consumption and production structure of China’s steel industry: Current situation and future development, Metals 10 (3), 302 (2020) [CrossRef] [Google Scholar]
  15. S.E. Lyke, R.H. Moore, Chemical production from industrial by-product gases (No. PNL- 3753), Battelle Pacific Northwest Labs., Richland, WA (USA), 1981 [CrossRef] [Google Scholar]
  16. J. Cordier, B. Dussart, Ammonia and methanol productionhow savings can be made, Pet. Tech. 307, 38–45 (1984) [Google Scholar]
  17. S. Kim, J. Kim, The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis, Fuel 266 (117093), 1–12 (2020) [Google Scholar]
  18. S. Kim, M. Kim, Y.T. Kim et al., Techno-economic evaluation of the integrated polygeneration system of methanol, power and heat production from coke oven gas, Energy Convers. Manag. 182, 240–250 (2019) [CrossRef] [Google Scholar]
  19. L. Deng, T.A. Adams II, Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manag. 204, 112315 (2020) [CrossRef] [Google Scholar]
  20. R. Gao, C. Zhang, G. Kwak et al., Techno-economic evaluation of methanol production using by-product gases from iron and steel works, Energy Convers. Manag. 213, 112819 (2020) [CrossRef] [Google Scholar]
  21. D.C. Rosenfeld, H. Böhm, J. Lindorfer et al., Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study, Renew Energ. 147, 1511–1524 (2020) [CrossRef] [Google Scholar]
  22. i3upgrade, Integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry, www.i3upgrade.eu [Google Scholar]
  23. M. Bampaou, K. Panopoulos, P. Seferlis et al., Integration of renewable hydrogen production in steelworks off-gases for the synthesis of methanol and methane, Energies 14 (10), 2904 (2021) [CrossRef] [Google Scholar]
  24. E. Heracleous, V. Koidi, A.A. Lappas et al., Valorization of steel-work off-gases: Influence of impurities on the performance of Cu-based methanol synthesis catalyst, Chem. Eng. J. 444, 136571 (2022) [CrossRef] [Google Scholar]
  25. A. Zaccara, A. Petrucciani, I. Matino et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10 (11), 1535 (2020) [CrossRef] [Google Scholar]
  26. P. Wolf-Zoellner, A.R. Medved, M. Lehner et al., In Situ catalytic methanation of real steelworks gases, Energies 14 (23), 8131 (2021) [CrossRef] [Google Scholar]
  27. A. Hauser, M. Neubert, A. Feldner et al., Design and implementation of an additively manufactured reactor concept for the catalytic methanation, Appl. Sci. 12 (18), 9393 (2022) [CrossRef] [Google Scholar]
  28. A. Hauser, A. Feldner, P. Treiber et al., Utilization of synthetic steel gases in an additively manufactured reactor for catalytic methanation, Sustainability 15 (9), 7652 (2023) [CrossRef] [Google Scholar]
  29. P. Wolf-Zoellner, M. Lehner, N. Kieberger, Application-based catalytic methanation of steelworks gases under dynamic operating conditions, J. Clean. Prod. 371, 133570 (2022) [CrossRef] [Google Scholar]
  30. S. Haag, C. Drosdzol, B. Williams et al., Recent developments in methanol technology by air liquide for CO2 reduction and CO2 usage, Chem. Ing. Tech. 94 (11), 1–13 (2022) [Google Scholar]
  31. S. Dettori, I. Matino, V. Iannino et al., Optimizing methane and methanol production from integrated steelworks process off-gases through economic hybrid model predictive control, IFAC-PapersOnLine 55 (2), 66–71 (2022) [CrossRef] [Google Scholar]
  32. M. Neubert, A. Hauser, B. Pourhossein et al., Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications, Appl. Energy 229, 289–298 (2018) [CrossRef] [Google Scholar]
  33. A. Hauser, M. Weitzer, S. Gunsch et al., Dynamic hydrogen-intensified methanation of synthetic by-product gases from steelworks, Fuel Process. Technol. 217, 106701 (2021) [CrossRef] [Google Scholar]
  34. A. Hauser, M. Neubert, A. Feldner et al., Design and implementation of an additively manufactured reactor concept for the catalytic methanation, Appl. Sci. 12 (18), 9393 (2022) [CrossRef] [Google Scholar]
  35. A. Hauser, A. Feldner, P. Treiber et al., Utilization of synthetic steel gases in an additively manufactured reactor for catalytic methanation, Sustainability 15 (9), 7652 (2023) [CrossRef] [Google Scholar]
  36. P. Wolf-Zoellner, M. Lehner, N. Kieberger, Application-based catalytic methanation of steelworks gases under dynamic operating conditions, J. Clean. Prod. 371, 133570 (2022) [CrossRef] [Google Scholar]
  37. I. Matino, S. Dettori, V. Colla et al., Echo-state neural networks forecasting steelworks off-gases for their dispatching in CH4 and CH3OH syntheses reactors. in: Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Online Conference, 6–8 October 2021 [Google Scholar]
  38. A. Hauser, P. Wolf-Zoellner, S. Haag et al., Valorizing steelworks gases by coupling novel methane and methanol synthesis reactors with an economic hybrid model predictive controller, Metals 12 (6) (2022) [Google Scholar]
  39. Enervis energy advisors, Sozialverträgliche Ausgestaltung eines Kohlekonsens, Berlin, 2016 [Google Scholar]
  40. S. Kolb, Szenarien für die Integration erneuerbarer Gase in den deutschen Gasmarkt bis 2050: Eine modellgestützte Analyse, Nürnberg, 2022. https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20184 [Google Scholar]
  41. A. Zauner, H. Böhm, D.C. Rosenfeld et al., Innovative large-scale energy storage technologies and Power-to-Gas concepts after optimization: Analysis on future technology options and on techno-economic optimization, Linz, 2019 [Google Scholar]
  42. M. Ouda, C. Hank, F. Nestler et al., Power-to-methanol: techno-economical and ecological insights, in: W. Maus (Ed.), Zukünftige Kraftstoffe − Energiewende Des Transp. Als Ein Welweit. Klimaziel, Springer Vieweg, Belrin 2019, pp. 380–409. doi:10.1007/978-3-662-58006-6_6 [CrossRef] [Google Scholar]
  43. International Energy Agency, World Energy Outlook 2020 [Google Scholar]
  44. A. Kirchner, M. Schlesinger, B. Weinmann et al., Modell Deutschland − Klimaschutz bis 2050 Vom Ziel her denken, Basel, Berlin, 2009 [Google Scholar]
  45. V. Iannino, V. Colla, C. Mocci et al., Multi-agent systems to improve efficiency in steelworks, Matériaux & Techniques, 109 (5-6), 502 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  46. M. Bampaou, K. Panopoulos, P. Seferlis et al., Economic evaluation of renewable hydrogen integration into steelworks for the production of methanol and methane, Energies, 15 (13), 4650 (2022) [CrossRef] [Google Scholar]
  47. ESTATISTA, 12 04 2022. [Online]. Available:https://de.statista.com/statistik/daten/studie/730823/umfrage/durchschnittlicher-preis-fuer-methanol-auf-dem-europaeischen-markt/ [Google Scholar]
  48. EUROSTAT, 12 04 2022. [Online]. Available: https://ec.europa.eu/eurostat/databrowser/bookmark/d5c259bb-b702-4c3f-bea7-fd09b85e54b9?lang=en [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.