Numéro |
Matériaux & Techniques
Volume 111, Numéro 2, 2023
Special Issue on ‘The role of Hydrogen in the transition to a sustainable steelmaking process’; edited by Ismael Matino and Valentina Colla
|
|
---|---|---|
Numéro d'article | 204 | |
Nombre de pages | 14 | |
Section | Environmental issues of materials and material production | |
DOI | https://doi.org/10.1051/mattech/2023025 | |
Publié en ligne | 28 août 2023 |
- K. Abbass, M.Z. Qasim, H. Song et al., A review of the global climate change impacts, adaptation, and sustainable mitigation measures, Environ. Sci. Pollut. Res. 29(28), 42539–42559 (2022) [CrossRef] [Google Scholar]
- S.J. Davis, N.S. Lewis, M. Shaner et al., Net-zero emissions energy systems, Science 360 (6396), eaas9793 (2018) [CrossRef] [Google Scholar]
- European Commission, Towards competitive and clean European steel, 2021, https://ec.europa.eu/info/sites/default/files/swd-competitive-clean-european-steel_en.pdf [Google Scholar]
- World Steel Association, Climate change and the production of iron and steel, 2021, https://worldsteel.org/wp-content/uploads/Climate-change-production-of-iron-and-steel-2021.pdf [Google Scholar]
- A. Ito, B. Langefeld, N. Götz, The future of steelmaking. How the European steel industry can achieve carbon neutrality, Roland Berger GMBH, 2020 [Google Scholar]
- T. Kempken, T. Hauck, C. Wang et al., Decarbonisation Pathways 2030-2050 (Deliverable 1.7), GreenSteel for Europe, 2021 [Google Scholar]
- T. Buergler, J. Prammer, Hydrogen steelmaking: Technology options and R&D projects, BHM Berg-und Hüttenmännische Monatshefte 164 (11), 447–451 (2019) [CrossRef] [Google Scholar]
- A. Della Rocca, D. Astesiano, E. Malfa, Rolling mill decarbonization: Tenova SmartBurners with 100% hydrogen, Matériaux & Techniques 109 (3-4), 309 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- I. Matino, S. Dettori, A. Zaccara et al., Hydrogen role in the valorization of integrated steelworks process off-gases through methane and methanol syntheses, Matériaux & Techniques 109 (3-4), 308 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- V. Colla, I. Matino, S. Dettori et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux Tech. 107 (1), 104 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- A. Maddaloni, R. Matino, I. Matino et al., A quadratic programming model for the optimization of off-gas networks in integrated steelworks, Matériaux Tech. 107(5), 502 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- I. Matino, S. Dettori, V. Colla et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, 113578 (2019) [CrossRef] [Google Scholar]
- M.E. Boot-Handford, J.C. Abanades, E.J. Anthony et al., Carbon capture and storage update, Energy Environ. Sci. 7 (1), 130–189 (2014) [CrossRef] [Google Scholar]
- K. He, L. Wang, X. Li, Review of the energy consumption and production structure of China’s steel industry: Current situation and future development, Metals 10 (3), 302 (2020) [CrossRef] [Google Scholar]
- S.E. Lyke, R.H. Moore, Chemical production from industrial by-product gases (No. PNL- 3753), Battelle Pacific Northwest Labs., Richland, WA (USA), 1981 [CrossRef] [Google Scholar]
- J. Cordier, B. Dussart, Ammonia and methanol productionhow savings can be made, Pet. Tech. 307, 38–45 (1984) [Google Scholar]
- S. Kim, J. Kim, The optimal carbon and hydrogen balance for methanol production from coke oven gas and Linz-Donawitz gas: Process development and techno-economic analysis, Fuel 266 (117093), 1–12 (2020) [Google Scholar]
- S. Kim, M. Kim, Y.T. Kim et al., Techno-economic evaluation of the integrated polygeneration system of methanol, power and heat production from coke oven gas, Energy Convers. Manag. 182, 240–250 (2019) [CrossRef] [Google Scholar]
- L. Deng, T.A. Adams II, Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization, Energy Convers. Manag. 204, 112315 (2020) [CrossRef] [Google Scholar]
- R. Gao, C. Zhang, G. Kwak et al., Techno-economic evaluation of methanol production using by-product gases from iron and steel works, Energy Convers. Manag. 213, 112819 (2020) [CrossRef] [Google Scholar]
- D.C. Rosenfeld, H. Böhm, J. Lindorfer et al., Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study, Renew Energ. 147, 1511–1524 (2020) [CrossRef] [Google Scholar]
- i3upgrade, Integrated and intelligent upgrade of carbon sources through hydrogen addition for the steel industry, www.i3upgrade.eu [Google Scholar]
- M. Bampaou, K. Panopoulos, P. Seferlis et al., Integration of renewable hydrogen production in steelworks off-gases for the synthesis of methanol and methane, Energies 14 (10), 2904 (2021) [CrossRef] [Google Scholar]
- E. Heracleous, V. Koidi, A.A. Lappas et al., Valorization of steel-work off-gases: Influence of impurities on the performance of Cu-based methanol synthesis catalyst, Chem. Eng. J. 444, 136571 (2022) [CrossRef] [Google Scholar]
- A. Zaccara, A. Petrucciani, I. Matino et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10 (11), 1535 (2020) [CrossRef] [Google Scholar]
- P. Wolf-Zoellner, A.R. Medved, M. Lehner et al., In Situ catalytic methanation of real steelworks gases, Energies 14 (23), 8131 (2021) [CrossRef] [Google Scholar]
- A. Hauser, M. Neubert, A. Feldner et al., Design and implementation of an additively manufactured reactor concept for the catalytic methanation, Appl. Sci. 12 (18), 9393 (2022) [CrossRef] [Google Scholar]
- A. Hauser, A. Feldner, P. Treiber et al., Utilization of synthetic steel gases in an additively manufactured reactor for catalytic methanation, Sustainability 15 (9), 7652 (2023) [CrossRef] [Google Scholar]
- P. Wolf-Zoellner, M. Lehner, N. Kieberger, Application-based catalytic methanation of steelworks gases under dynamic operating conditions, J. Clean. Prod. 371, 133570 (2022) [CrossRef] [Google Scholar]
- S. Haag, C. Drosdzol, B. Williams et al., Recent developments in methanol technology by air liquide for CO2 reduction and CO2 usage, Chem. Ing. Tech. 94 (11), 1–13 (2022) [Google Scholar]
- S. Dettori, I. Matino, V. Iannino et al., Optimizing methane and methanol production from integrated steelworks process off-gases through economic hybrid model predictive control, IFAC-PapersOnLine 55 (2), 66–71 (2022) [CrossRef] [Google Scholar]
- M. Neubert, A. Hauser, B. Pourhossein et al., Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications, Appl. Energy 229, 289–298 (2018) [CrossRef] [Google Scholar]
- A. Hauser, M. Weitzer, S. Gunsch et al., Dynamic hydrogen-intensified methanation of synthetic by-product gases from steelworks, Fuel Process. Technol. 217, 106701 (2021) [CrossRef] [Google Scholar]
- A. Hauser, M. Neubert, A. Feldner et al., Design and implementation of an additively manufactured reactor concept for the catalytic methanation, Appl. Sci. 12 (18), 9393 (2022) [CrossRef] [Google Scholar]
- A. Hauser, A. Feldner, P. Treiber et al., Utilization of synthetic steel gases in an additively manufactured reactor for catalytic methanation, Sustainability 15 (9), 7652 (2023) [CrossRef] [Google Scholar]
- P. Wolf-Zoellner, M. Lehner, N. Kieberger, Application-based catalytic methanation of steelworks gases under dynamic operating conditions, J. Clean. Prod. 371, 133570 (2022) [CrossRef] [Google Scholar]
- I. Matino, S. Dettori, V. Colla et al., Echo-state neural networks forecasting steelworks off-gases for their dispatching in CH4 and CH3OH syntheses reactors. in: Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Online Conference, 6–8 October 2021 [Google Scholar]
- A. Hauser, P. Wolf-Zoellner, S. Haag et al., Valorizing steelworks gases by coupling novel methane and methanol synthesis reactors with an economic hybrid model predictive controller, Metals 12 (6) (2022) [Google Scholar]
- Enervis energy advisors, Sozialverträgliche Ausgestaltung eines Kohlekonsens, Berlin, 2016 [Google Scholar]
- S. Kolb, Szenarien für die Integration erneuerbarer Gase in den deutschen Gasmarkt bis 2050: Eine modellgestützte Analyse, Nürnberg, 2022. https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/20184 [Google Scholar]
- A. Zauner, H. Böhm, D.C. Rosenfeld et al., Innovative large-scale energy storage technologies and Power-to-Gas concepts after optimization: Analysis on future technology options and on techno-economic optimization, Linz, 2019 [Google Scholar]
- M. Ouda, C. Hank, F. Nestler et al., Power-to-methanol: techno-economical and ecological insights, in: W. Maus (Ed.), Zukünftige Kraftstoffe − Energiewende Des Transp. Als Ein Welweit. Klimaziel, Springer Vieweg, Belrin 2019, pp. 380–409. doi:10.1007/978-3-662-58006-6_6 [CrossRef] [Google Scholar]
- International Energy Agency, World Energy Outlook 2020 [Google Scholar]
- A. Kirchner, M. Schlesinger, B. Weinmann et al., Modell Deutschland − Klimaschutz bis 2050 Vom Ziel her denken, Basel, Berlin, 2009 [Google Scholar]
- V. Iannino, V. Colla, C. Mocci et al., Multi-agent systems to improve efficiency in steelworks, Matériaux & Techniques, 109 (5-6), 502 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- M. Bampaou, K. Panopoulos, P. Seferlis et al., Economic evaluation of renewable hydrogen integration into steelworks for the production of methanol and methane, Energies, 15 (13), 4650 (2022) [CrossRef] [Google Scholar]
- ESTATISTA, 12 04 2022. [Online]. Available:https://de.statista.com/statistik/daten/studie/730823/umfrage/durchschnittlicher-preis-fuer-methanol-auf-dem-europaeischen-markt/ [Google Scholar]
- EUROSTAT, 12 04 2022. [Online]. Available: https://ec.europa.eu/eurostat/databrowser/bookmark/d5c259bb-b702-4c3f-bea7-fd09b85e54b9?lang=en [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.