Issue
Matériaux & Techniques
Volume 110, Number 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
Article Number 203
Number of page(s) 8
Section Métaux et alliages / Metals and alloys
DOI https://doi.org/10.1051/mattech/2022005
Published online 26 April 2022
  1. J.M. Pipard, N. Nicaise, S. Berbenni, et al., A new mean field micromechanical approach to capture grain size effects, Comput. Mater. Sci. 45, 604–610 (2009) [CrossRef] [Google Scholar]
  2. J.W. Signorelli, A. Roatta, N.S. De Vincentis, et al., Electron backscatter diffraction study of orientation gradients at the grain boundaries of a polycrystalline steel sheet deformed along different loading paths, J. Appl. Crystallogr. 50, 1179–1191 (2017) [CrossRef] [Google Scholar]
  3. N.S. De Vincentis, A. Roatta, R.E. Bolmaro, et al., EBSD analysis of orientation gradients developed near grain boundaries, J. Mater. Res. 22, (2019) [Google Scholar]
  4. J. Genée, N. Gey, F. Bonnet, et al., Experimental and numerical investigation of key microstructural features influencing the localization of plastic deformation in Fe-TiB2 metal matrix composite, Mater. Sci. 56, 11278–11297 (2021) [CrossRef] [Google Scholar]
  5. M. Calcagnotto, D. Ponge, E. Demir, et al., Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527, 2738–2746 (2010) [CrossRef] [Google Scholar]
  6. S.K. Mishra, P. Pant, K. Narasimhan, et al., On the widths of orientation gradient zones adjacent to grain boundaries, Scr. Mater. 61, 273–276 (2009) [CrossRef] [Google Scholar]
  7. G.Z. Voyiadjis, M. Yaghoobi, Review of nanoindentation size effect: Experiments and atomistic simulation, Crystals 7, 321 (2017) [CrossRef] [Google Scholar]
  8. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. 46, 411–425 (1998) [CrossRef] [Google Scholar]
  9. G.Z. Voyiadjis, C. Zhang, The mechanical behavior during nanoindentation near the grain boundary in a bicrystal FCC metal, Mater. Sci. Eng. A 621, 218–228 (2015) [CrossRef] [Google Scholar]
  10. C. Zhang, G.Z. Voyiadjis, Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal, Mater. Sci. Eng. A 659, 55–62 (2016) [CrossRef] [Google Scholar]
  11. Y.M. Soifer, A. Verdyan, M. Kazakevich, et al., Nanohardness of copper in the vicinity of grain boundaries, Scr. Mater. 47, 799–804 (2002) [CrossRef] [Google Scholar]
  12. W.A. Soer, Interactions between dislocations and grain boundaries, PhD Thesis, University of Groningen, 2006 [Google Scholar]
  13. J.S. Weaver, D.R. Jones, N. Li, et al., Quantifying heterogeneous deformation in grain boundary regions on shock loaded tantalum using spherical and sharp tip nanoindentation, Mater. Sci. Eng. A 737, 373 (2018) [CrossRef] [Google Scholar]
  14. F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD data – Specification of the MTEX algorithm, Ultramicroscopy 111, 1720–1733 (2011) [CrossRef] [Google Scholar]
  15. J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1, 153–162 (1953) [CrossRef] [Google Scholar]
  16. W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58, 994–997 (2008) [CrossRef] [Google Scholar]
  17. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992) [CrossRef] [Google Scholar]
  18. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3–20 (2004) [CrossRef] [Google Scholar]
  19. G.M. Pharr, A. Bolshakov, Understanding nanoindentation unloading curves, J. Mater. Res. 17, 2660–2671 (2002) [CrossRef] [Google Scholar]
  20. P. Sudharshan Phani, W.C. Oliver, A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing, Materials & Design 164, 107563 (2019) [CrossRef] [Google Scholar]
  21. K. Durst, B. Backes, O. Franke, et al., Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations, Acta Mater. 54, 2547–2555 (2006) [CrossRef] [Google Scholar]
  22. D. Tabor, The hardness of solids, Rev. Phys. Tech. 1, 145 (1970) [CrossRef] [Google Scholar]
  23. G.I. Taylor, The mechanism of plastic deformation of crystals. Part I: Theor. Proc. Roy. Soc. A 145, 362 (1934) [Google Scholar]
  24. H. Mughrabi, The α-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: Dependence on slip mode, dislocation arrangement and density, Curr. Opin. Solid State Mater. Sci. 20, 411–420 (2016) [CrossRef] [Google Scholar]
  25. T. Friedrich, A. Bochmann, J. Dinger, et al., Application of the pattern matching approach for EBSD calibration and orientation mapping, utilising dynamical EBSP simulations, Ultramicroscopy 184, 44–51 (2018) [CrossRef] [Google Scholar]
  26. A.J. Wilkinson, D. Randman, Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction, Philos. Mag. 90, 1159–1177 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.