Numéro |
Matériaux & Techniques
Volume 110, Numéro 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
|
|
---|---|---|
Numéro d'article | 203 | |
Nombre de pages | 8 | |
Section | Métaux et alliages / Metals and alloys | |
DOI | https://doi.org/10.1051/mattech/2022005 | |
Publié en ligne | 26 avril 2022 |
- J.M. Pipard, N. Nicaise, S. Berbenni, et al., A new mean field micromechanical approach to capture grain size effects, Comput. Mater. Sci. 45, 604–610 (2009) [CrossRef] [Google Scholar]
- J.W. Signorelli, A. Roatta, N.S. De Vincentis, et al., Electron backscatter diffraction study of orientation gradients at the grain boundaries of a polycrystalline steel sheet deformed along different loading paths, J. Appl. Crystallogr. 50, 1179–1191 (2017) [CrossRef] [Google Scholar]
- N.S. De Vincentis, A. Roatta, R.E. Bolmaro, et al., EBSD analysis of orientation gradients developed near grain boundaries, J. Mater. Res. 22, (2019) [Google Scholar]
- J. Genée, N. Gey, F. Bonnet, et al., Experimental and numerical investigation of key microstructural features influencing the localization of plastic deformation in Fe-TiB2 metal matrix composite, Mater. Sci. 56, 11278–11297 (2021) [CrossRef] [Google Scholar]
- M. Calcagnotto, D. Ponge, E. Demir, et al., Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527, 2738–2746 (2010) [CrossRef] [Google Scholar]
- S.K. Mishra, P. Pant, K. Narasimhan, et al., On the widths of orientation gradient zones adjacent to grain boundaries, Scr. Mater. 61, 273–276 (2009) [CrossRef] [Google Scholar]
- G.Z. Voyiadjis, M. Yaghoobi, Review of nanoindentation size effect: Experiments and atomistic simulation, Crystals 7, 321 (2017) [CrossRef] [Google Scholar]
- W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. 46, 411–425 (1998) [CrossRef] [Google Scholar]
- G.Z. Voyiadjis, C. Zhang, The mechanical behavior during nanoindentation near the grain boundary in a bicrystal FCC metal, Mater. Sci. Eng. A 621, 218–228 (2015) [CrossRef] [Google Scholar]
- C. Zhang, G.Z. Voyiadjis, Rate-dependent size effects and material length scales in nanoindentation near the grain boundary for a bicrystal FCC metal, Mater. Sci. Eng. A 659, 55–62 (2016) [CrossRef] [Google Scholar]
- Y.M. Soifer, A. Verdyan, M. Kazakevich, et al., Nanohardness of copper in the vicinity of grain boundaries, Scr. Mater. 47, 799–804 (2002) [CrossRef] [Google Scholar]
- W.A. Soer, Interactions between dislocations and grain boundaries, PhD Thesis, University of Groningen, 2006 [Google Scholar]
- J.S. Weaver, D.R. Jones, N. Li, et al., Quantifying heterogeneous deformation in grain boundary regions on shock loaded tantalum using spherical and sharp tip nanoindentation, Mater. Sci. Eng. A 737, 373 (2018) [CrossRef] [Google Scholar]
- F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD data – Specification of the MTEX algorithm, Ultramicroscopy 111, 1720–1733 (2011) [CrossRef] [Google Scholar]
- J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1, 153–162 (1953) [CrossRef] [Google Scholar]
- W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58, 994–997 (2008) [CrossRef] [Google Scholar]
- W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992) [CrossRef] [Google Scholar]
- W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3–20 (2004) [CrossRef] [Google Scholar]
- G.M. Pharr, A. Bolshakov, Understanding nanoindentation unloading curves, J. Mater. Res. 17, 2660–2671 (2002) [CrossRef] [Google Scholar]
- P. Sudharshan Phani, W.C. Oliver, A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing, Materials & Design 164, 107563 (2019) [CrossRef] [Google Scholar]
- K. Durst, B. Backes, O. Franke, et al., Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations, Acta Mater. 54, 2547–2555 (2006) [CrossRef] [Google Scholar]
- D. Tabor, The hardness of solids, Rev. Phys. Tech. 1, 145 (1970) [CrossRef] [Google Scholar]
- G.I. Taylor, The mechanism of plastic deformation of crystals. Part I: Theor. Proc. Roy. Soc. A 145, 362 (1934) [Google Scholar]
- H. Mughrabi, The α-factor in the Taylor flow-stress law in monotonic, cyclic and quasi-stationary deformations: Dependence on slip mode, dislocation arrangement and density, Curr. Opin. Solid State Mater. Sci. 20, 411–420 (2016) [CrossRef] [Google Scholar]
- T. Friedrich, A. Bochmann, J. Dinger, et al., Application of the pattern matching approach for EBSD calibration and orientation mapping, utilising dynamical EBSP simulations, Ultramicroscopy 184, 44–51 (2018) [CrossRef] [Google Scholar]
- A.J. Wilkinson, D. Randman, Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction, Philos. Mag. 90, 1159–1177 (2010) [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.