Numéro |
Matériaux & Techniques
Volume 110, Numéro 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
|
|
---|---|---|
Numéro d'article | 204 | |
Nombre de pages | 10 | |
Section | Mise en oeuvre des matériaux / Materials processing | |
DOI | https://doi.org/10.1051/mattech/2022008 | |
Publié en ligne | 26 avril 2022 |
- T.P.D. Rajan, B.C. Pai, Developments in processing of functionally gradient metals and metal-ceramic composites: a review, Acta Metall. Sin. 27, 825–838 (2014) [CrossRef] [Google Scholar]
- S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites, Compos. Sci. Technol. 68, 583–601 (2008) [CrossRef] [Google Scholar]
- M.U. Saeed, B. Li, Z. Chen, et al., A novel processing approach to produce microchannel embedded carbon-epoxy composites, J. Manuf. Process. 22, 26–33 (2015) [Google Scholar]
- I.-K. Kim, S.I. Hong, Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates, Mater. Des. 47, 590–598 (2013) [CrossRef] [Google Scholar]
- L. Kunčická, R. Kocich, Deformation behaviour of Cu-Al clad composites produced by rotary swaging, IOP Conf. Ser. Mater. Sci. Eng. 369, 1–8 (2018) [Google Scholar]
- M. Aravind, P. Yu, M.Y. Yau, et al., Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites by reaction sintering, Mater. Sci. Eng. A. 380, 384–393 (2004) [CrossRef] [Google Scholar]
- T. Jin, G. Li, Y. Cao, et al., Experimental research on applying the copper-clad aluminum tube as connecting tubes of air conditioners, Energy Build. 97, 1–5 (2015) [CrossRef] [Google Scholar]
- N. Kazuyuki, M. Kazuo, H. Chihiro, Development of manufacturing process of clad bar by rotary rolling, ISIJ Int. 37, 899–905 (1997) [CrossRef] [Google Scholar]
- K.Y. Rhee, W.Y. Han, H.J. Park, et al., Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A 384, 70–76 (2004) [CrossRef] [Google Scholar]
- M. Zebardast, A.K. Taheri, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, J. Mater. Process. Technol. 211, 1034–1043 (2011) [CrossRef] [Google Scholar]
- R. Kocich, A. Macháčková, L. Kunčická, et al., Fabrication and characterization of cold-swaged multilayered Al-Cu clad composites, Mater. Des. 71, 36–47 (2015) [CrossRef] [Google Scholar]
- R. Kocich, L. Kunčická, C.F. Davis, et al., Deformation behavior of multilayered Al–Cu clad composite during cold-swaging, Mater. Des. 90, 379–388 (2016) [CrossRef] [Google Scholar]
- X. Li, G. Zu, M. Ding, et al., Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing, Mater. Sci. Eng. A 529, 485–491 (2011) [CrossRef] [Google Scholar]
- L.Y. Sheng, F. Yang, T.F. Xi, et al., Influence of heat treatment on interface of Cu/Al bimetal composites fabricated by cold rolling, Compo. Part B Eng. 42, 1468–1473 (2011) [CrossRef] [Google Scholar]
- A. Gueydan, B. Domengès, E. Hug, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics 50, 34–42 (2014) [CrossRef] [Google Scholar]
- M. Abbasi, A. Karimi Taheri, M.T. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, J. Alloys Compd. 319, 233–241 (2001) [CrossRef] [Google Scholar]
- W.-B. Lee, K.-S. Bang, S.-B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J. Alloys Compd. 390, 212–219 (2005) [CrossRef] [Google Scholar]
- E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A 528, 7103–7106 (2011) [CrossRef] [Google Scholar]
- L. Kunčická, R. Kocich, T.C. Lowe, Advances in metals and alloys for joint replacement, Prog. Mater. Sci. 88, 232–280 (2017) [CrossRef] [Google Scholar]
- W. Głuchowski, Z. Rdzawski, J. Domagała-Dubiel, et al., Microstructure and properties of multifibre composites, Arch. Metall. Mater. 61, 911–916 (2016) [CrossRef] [Google Scholar]
- F. Moisy, A. Gueydan, X. Sauvage, et al., Influence of intermetallic compounds on the electrical resistivity of architecture copper clad aluminum composites elaborated by a restacking drawing method, Mater. Des. 155, 366–374 (2018) [CrossRef] [Google Scholar]
- C.Y. Chen, W.S. Hwang, Effect of annealing on the interfacial structure of aluminum-copper joints, Mater. Trans. 47, 1938–1947 (2007) [CrossRef] [Google Scholar]
- WC. Oliver, GM. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992) [CrossRef] [Google Scholar]
- W. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998) [CrossRef] [Google Scholar]
- R. Kocich, L. Kunčická, A. Macháčková, et al., Improvement of mechanical and electrical properties of rotary swaged Al–Cu clad composites, Mater. Des. 123, 137–146 (2017) [CrossRef] [Google Scholar]
- F. Moisy, X. Sauvage, E. Hug, Investigation of the early stage of reactive interdiffusion in the Cu–Al system by in-situ transmission electron microscopy, Materialia 9, 100663 (2020) [Google Scholar]
- X. Hernot, O. Bartier, Y. Bekouche, et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Solids Struct. 43, 4136–4153 (2006) [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.