Matériaux & Techniques
Volume 110, Number 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
Article Number 204
Number of page(s) 10
Section Mise en oeuvre des matériaux / Materials processing
Published online 26 April 2022
  1. T.P.D. Rajan, B.C. Pai, Developments in processing of functionally gradient metals and metal-ceramic composites: a review, Acta Metall. Sin. 27, 825–838 (2014) [CrossRef] [Google Scholar]
  2. S.C. Tjong, Y.-W. Mai, Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites, Compos. Sci. Technol. 68, 583–601 (2008) [CrossRef] [Google Scholar]
  3. M.U. Saeed, B. Li, Z. Chen, et al., A novel processing approach to produce microchannel embedded carbon-epoxy composites, J. Manuf. Process. 22, 26–33 (2015) [Google Scholar]
  4. I.-K. Kim, S.I. Hong, Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates, Mater. Des. 47, 590–598 (2013) [CrossRef] [Google Scholar]
  5. L. Kunčická, R. Kocich, Deformation behaviour of Cu-Al clad composites produced by rotary swaging, IOP Conf. Ser. Mater. Sci. Eng. 369, 1–8 (2018) [Google Scholar]
  6. M. Aravind, P. Yu, M.Y. Yau, et al., Formation of Al2Cu and AlCu intermetallics in Al(Cu) alloy matrix composites by reaction sintering, Mater. Sci. Eng. A. 380, 384–393 (2004) [CrossRef] [Google Scholar]
  7. T. Jin, G. Li, Y. Cao, et al., Experimental research on applying the copper-clad aluminum tube as connecting tubes of air conditioners, Energy Build. 97, 1–5 (2015) [CrossRef] [Google Scholar]
  8. N. Kazuyuki, M. Kazuo, H. Chihiro, Development of manufacturing process of clad bar by rotary rolling, ISIJ Int. 37, 899–905 (1997) [CrossRef] [Google Scholar]
  9. K.Y. Rhee, W.Y. Han, H.J. Park, et al., Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng. A 384, 70–76 (2004) [CrossRef] [Google Scholar]
  10. M. Zebardast, A.K. Taheri, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, J. Mater. Process. Technol. 211, 1034–1043 (2011) [CrossRef] [Google Scholar]
  11. R. Kocich, A. Macháčková, L. Kunčická, et al., Fabrication and characterization of cold-swaged multilayered Al-Cu clad composites, Mater. Des. 71, 36–47 (2015) [CrossRef] [Google Scholar]
  12. R. Kocich, L. Kunčická, C.F. Davis, et al., Deformation behavior of multilayered Al–Cu clad composite during cold-swaging, Mater. Des. 90, 379–388 (2016) [CrossRef] [Google Scholar]
  13. X. Li, G. Zu, M. Ding, et al., Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing, Mater. Sci. Eng. A 529, 485–491 (2011) [CrossRef] [Google Scholar]
  14. L.Y. Sheng, F. Yang, T.F. Xi, et al., Influence of heat treatment on interface of Cu/Al bimetal composites fabricated by cold rolling, Compo. Part B Eng. 42, 1468–1473 (2011) [CrossRef] [Google Scholar]
  15. A. Gueydan, B. Domengès, E. Hug, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics 50, 34–42 (2014) [CrossRef] [Google Scholar]
  16. M. Abbasi, A. Karimi Taheri, M.T. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, J. Alloys Compd. 319, 233–241 (2001) [CrossRef] [Google Scholar]
  17. W.-B. Lee, K.-S. Bang, S.-B. Jung, Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing, J. Alloys Compd. 390, 212–219 (2005) [CrossRef] [Google Scholar]
  18. E. Hug, N. Bellido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng. A 528, 7103–7106 (2011) [CrossRef] [Google Scholar]
  19. L. Kunčická, R. Kocich, T.C. Lowe, Advances in metals and alloys for joint replacement, Prog. Mater. Sci. 88, 232–280 (2017) [CrossRef] [Google Scholar]
  20. W. Głuchowski, Z. Rdzawski, J. Domagała-Dubiel, et al., Microstructure and properties of multifibre composites, Arch. Metall. Mater. 61, 911–916 (2016) [CrossRef] [Google Scholar]
  21. F. Moisy, A. Gueydan, X. Sauvage, et al., Influence of intermetallic compounds on the electrical resistivity of architecture copper clad aluminum composites elaborated by a restacking drawing method, Mater. Des. 155, 366–374 (2018) [CrossRef] [Google Scholar]
  22. C.Y. Chen, W.S. Hwang, Effect of annealing on the interfacial structure of aluminum-copper joints, Mater. Trans. 47, 1938–1947 (2007) [CrossRef] [Google Scholar]
  23. WC. Oliver, GM. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992) [CrossRef] [Google Scholar]
  24. W. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998) [CrossRef] [Google Scholar]
  25. R. Kocich, L. Kunčická, A. Macháčková, et al., Improvement of mechanical and electrical properties of rotary swaged Al–Cu clad composites, Mater. Des. 123, 137–146 (2017) [CrossRef] [Google Scholar]
  26. F. Moisy, X. Sauvage, E. Hug, Investigation of the early stage of reactive interdiffusion in the Cu–Al system by in-situ transmission electron microscopy, Materialia 9, 100663 (2020) [Google Scholar]
  27. X. Hernot, O. Bartier, Y. Bekouche, et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Solids Struct. 43, 4136–4153 (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.