Issue
Matériaux & Techniques
Volume 110, Number 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
Article Number 205
Number of page(s) 16
Section Essais, mesure, contrôle non destructif / Testing, measurement and non destructive testing
DOI https://doi.org/10.1051/mattech/2022025
Published online 04 July 2022
  1. J. Alcalá, A.C. Barone, M. Anglada, The influence of plastic hardening on surface deformation modes around Vickers and spherical indents, Acta Mater. 48(13), 3451–3464 (2000), https://doi.org/10.1016/S1359-6454(00)00140-3 [CrossRef] [Google Scholar]
  2. O. Bartier, X. Hernot, G. Mauvoisin, Theoretical and experimental analysis of contact radius for spherical indentation, Mech. Mater. 42(6), 640–656 (2010), https://doi.org/10.1016/j.mechmat.2010.03.003 [CrossRef] [Google Scholar]
  3. J.-M. Collin, G. Mauvoisin, R. El Abdi, An experimental method to determine the contact radius changes during a spherical instrumented indentation, Mech. Mater. 40(4), 401–406 (2008), https://doi.org/10.1016/j.mechmat.2007.10.002 [CrossRef] [Google Scholar]
  4. C. Schneider-Maunoury, A. Albayda, O. Bartier, On the use of instrumented indentation to characterize the mechanical properties of functionally graded binary alloys manufactured by additive manufacturing, Mater. Today Commun. 25, 101451 (2020), https://doi.org/10.1016/j.mtcomm.2020.101451 [CrossRef] [Google Scholar]
  5. C. Moussa, O. Bartier, X. Hernot, et al., Mechanical characterization of carbonitrided steel with spherical indentation using the average representative strain, Mater. Des. 89, 1191–1198 (2016), https://doi.org/10.1016/j.matdes.2015.10.067 [CrossRef] [Google Scholar]
  6. A. Nayebi, R. El Abdi, O. Bartier, et al., New procedure to determine steel mechanical parameters from the spherical indentation technique, Mech. Mater. 34(4), 243–254 (2002), https://doi.org/10.1016/S0167-6636(02)00113-8 [CrossRef] [Google Scholar]
  7. D. Tabor, The Hardness of Metals, Oxford University Press, Oxford, New York, 2000 [Google Scholar]
  8. J.-H. Ahn, D. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect, J. Mater. Res. 16(11), 3170–3178 (2001), https://doi.org/10.1557/JMR.2001.0437 [CrossRef] [Google Scholar]
  9. E. Jeon, M. Baik, S. Kim, et al., Determining representative stress and representative strain in deriving indentation flow curves based on finite element analysis, Key Eng. Mater. 297-300, 2152–2157 (2005), https://doi.org/10.4028/www.scientific.net/KEM.297-300.2152 [CrossRef] [Google Scholar]
  10. H. O’Neill, Hardness measurement of metals and alloys, 2nd ed., Springer, U.S., 1967, [online] https://www.springer.com/gp/book/9781504125215 (accessed 02/04/2021) [Google Scholar]
  11. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6), 1564–1583 (1992), https://doi.org/10.1557/JMR.1992.1564 [CrossRef] [Google Scholar]
  12. B. Taljat, T. Zacharia, F. Kosel, New analytical procedure to determine stress–strain curve from spherical indentation data, Int. J. Solids Struct. 35(33), 4411–4426 (1998), https://doi.org/10.1016/S0020-7683(97)00249-7 [CrossRef] [Google Scholar]
  13. Y. Cao, J. Lu, A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve, Acta Mater. 52, 4023–4032 (2004), https://doi.org/10.1016/j.actamat.2004.05.018 [CrossRef] [Google Scholar]
  14. Y. Cao, X. Qian, N. Huber, Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain, Mater. Sci. Eng. A 454-455, 1–13 (2007), https://doi.org/10.1016/j.msea.2007.01.002 [CrossRef] [Google Scholar]
  15. M. Zhao, N. Ogasawara, N. Chiba, et al., A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation, Acta Mater. 1(54), 23–32 (2006), https://doi.org/10.1016/j.actamat.2005.08.020 [CrossRef] [Google Scholar]
  16. N. Ogasawara, N. Chiba, X. Chen, A simple framework of spherical indentation for measuring elastoplastic properties, Mech. Mater. 41, 1025–1033 (2009), https://doi.org/10.1016/j.mechmat.2009.04.010 [CrossRef] [Google Scholar]
  17. E. Jeon, J.-Y. Kim, M.-K. Baik, et al., Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves, Mater. Sci. Eng. A 419(1), 196–201 (2006), https://doi.org/10.1016/j.msea.2005.12.012 [CrossRef] [Google Scholar]
  18. M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper, Acta Mater. 46(9), 3047–3056 (1998), https://doi.org/10.1016/S1359-6454(98)00010-X [CrossRef] [Google Scholar]
  19. J.H. Lee, T. Kim, H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals, Int. J. Solids Struct. 47(5), 647–664 (2010), https://doi.org/10.1016/j.ijsolstr.2009.11.003 [CrossRef] [Google Scholar]
  20. C. Yu, Y. Feng, R. Yang, et al., An integrated method to determine elastic–plastic parameters by instrumented spherical indentation, J. Mater. Res. 29(9), 1095–1103 (2014), https://doi.org/10.1557/jmr.2014.78 [CrossRef] [Google Scholar]
  21. L. Meng, B. Raghavan, O. Bartier, et al., An objective meta-modeling approach for indentation-based material characterization, Mech. Mater. 107, 31–44 (2017), https://doi.org/10.1016/j.mechmat.2017.01.011 [CrossRef] [Google Scholar]
  22. C. Moussa, X. Hernot, O. Bartier, et al., Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain, J. Mater. Sci. 2013, https://doi.org/10.1007/s10853-013-7739-1 [Google Scholar]
  23. M. Idriss, O. Bartier, G. Mauvoisin, et al., Determining the stress level of monotonic plastically pre-hardened metal sheets using the spherical instrumented indentation technique, J. Mech. Sci. Technol. 33, 183–195 (2019), https://doi.org/10.1007/s12206-018-1218-1 [CrossRef] [Google Scholar]
  24. P. Jiang, T. Zhang, R. Yang, Experimental verification for an instrumented spherical indentation technique in determining mechanical properties of metallic materials, J. Mater. Res. 26(11), 1414–1420 (2011), https://doi.org/10.1557/jmr.2011.51 [CrossRef] [Google Scholar]
  25. T. Zhang, S. Wang, W. Wang, Method to determine the optimal constitutive model from spherical indentation tests, Results Phys. 8, 716–727 (2018), https://doi.org/10.1016/j.rinp.2018.01.019 [CrossRef] [Google Scholar]
  26. L. Meng, P. Breitkopf, B. Raghavan, et al., On the study of mystical materials identified by indentation on power law and Voce hardening solids, Int. J. Mater. Form. 12(4), 587–602 (2019), https://doi.org/10.1007/s12289-018-1436-1 [CrossRef] [Google Scholar]
  27. M.M. Chaudhri, Subsurface plastic strain distribution around spherical indentations in metals, Philos. Mag. A 74(5), 1213–1224 (1996), https://doi.org/10.1080/01418619608239721 [Google Scholar]
  28. O. Bartier, X. Hernot, G. Mauvoisin, et al., Comparaison entre les déformations représentatives de l’indentation Vickers et de l’indentation sphérique, Matér. Tech. 101(3), Art. no. 3 (2013), https://doi.org/10.1051/mattech/2013072 [Google Scholar]
  29. X. Hernot, C. Moussa, O. Bartier, Study of the concept of representative strain and constraint factor introduced by Vickers indentation, Mech. Mater. 68, 1–14 (2014), https://doi.org/10.1016/j.mechmat.2013.07.004 [CrossRef] [Google Scholar]
  30. Abaqus documentation, https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm (accessed 10/21/2021) [Google Scholar]
  31. H. Lee, J. Haeng Lee, G.M. Pharr A numerical approach to spherical indentation techniques for material property evaluation, J. Mech. Phys. Solids. 53(9), 2037–2069 (2005) https://doi.org/10.1016/j.jmps.2005.04.007 [CrossRef] [Google Scholar]
  32. J.R. Matthews, Indentation hardness and hot pressing, Acta Metall. 28(3), 311–318 (1980) [CrossRef] [Google Scholar]
  33. R. Hill, B. Storåkers, A.B. Zdunek, A theoretical study of the Brinell hardness test, Proc. R. Soc. Lond. Math. Phys. Sci. 423(1865), 301–330 (1989), https://doi.org/10.1098/rspa.1989.0056 [Google Scholar]
  34. X. Hernot, O. Bartier, Y. Bekouche, et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Solids Struct. 43(14-15), 4136–4153 (2006), https://doi.org/10.1016/j.ijsolstr.2005.06.007 [CrossRef] [Google Scholar]
  35. S.H. Kim, B.W. Lee, Y. Choi, et al., Quantitative determination of contact depth during spherical indentation of metallic materials – A FEM study, Mater. Sci. Eng. A 1-2(415), 59–65 (2006), https://doi.org/10.1016/j.msea.2005.08.217 [CrossRef] [Google Scholar]
  36. M. Kim, K.P. Marimuthu, J.H. Lee, et al., Spherical indentation method to evaluate material properties of high-strength materials, Int. J. Mech. Sci. 106, 117–127 (2016), https://doi.org/10.1016/j.ijmecsci.2015.12.008 [CrossRef] [Google Scholar]
  37. Python Release Python 3.3.0, Python.org., https://www.python.org/downloads/release/python-330/ (accessed 10/21/2021) [Google Scholar]
  38. O. Bartier, X. Hernot, Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material, Int. J. Solids Struct. 49, 2015–2026 (2012), https://doi.org/10.1016/j.ijsolstr.2012.04.005 [CrossRef] [Google Scholar]
  39. Y.Y. Lim, M.M. Chaudhri, Indentation of rigid cones into conical holes molded in elastic blocks, J. Appl. Phys. 98(7), 073518 (2005), https://doi.org/10.1063/1.2060933 [CrossRef] [Google Scholar]
  40. A.J. Cackett, C.D. Hardie, J.J.H. Lim, et al., Spherical indentation of copper: Crystal plasticity vs. experiment, Materialia 7, 100368 (2019), https://doi.org/10.1016/j.mtla.2019.100368 [CrossRef] [Google Scholar]
  41. J.J. Roa, E. Jiménez-Piqué, X.G. Capdevila, et al., Nanoindentation with spherical tips of single crystals of YBCO textured by the Bridgman technique: Determination of indentation stress–strain curves, J. Eur. Ceram. Soc. 30(6), 1477–1482 (2010), https://doi.org/10.1016/j.jeurceramsoc.2009.10.021 [CrossRef] [Google Scholar]
  42. L. Chen, A. Ahadi, J. Zhou, et al., Numerical and experimental study of the roughness effects on mechanical properties of AISI316L by nanoindentation, Model. Numer. Simul. Mater. Sci. 4(4), Art. no. 4 (2014), https://doi.org/10.4236/mnsms.2014.44017 [Google Scholar]
  43. D. Chicot, H. Ageorges, M. Voda, Hardness of thermal sprayed coatings: Relevance of the scale of measurement, Surf. Coat. Technol. 268, 173–179 (2015), https://doi.org/10.1016/j.surfcoat.2014.04.043 [CrossRef] [Google Scholar]
  44. O. Iracheta, C.J. Bennett, W. Sun, The influence of the indentation size in relation to the size of the microstructure of three polycrystalline materials indented with a Berkovich indenter, Mater. Sci. Eng. A., (2017), https://doi.org/10.1016/j.msea.2017.08.023 [Google Scholar]
  45. D.M. De Bono, T. London, M. Baker, et al., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, Int. J. Mech. Sci. 123, 162–176 (2017), https://doi.org/10.1016/j.ijmecsci.2017.02.006 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.