Numéro |
Matériaux & Techniques
Volume 110, Numéro 2, 2022
Special Issue on ‘Indentation across scales and techniques: recent advances in experiments and modelling’, edited by Vincent Keryvin
|
|
---|---|---|
Numéro d'article | 205 | |
Nombre de pages | 16 | |
Section | Essais, mesure, contrôle non destructif / Testing, measurement and non destructive testing | |
DOI | https://doi.org/10.1051/mattech/2022025 | |
Publié en ligne | 4 juillet 2022 |
- J. Alcalá, A.C. Barone, M. Anglada, The influence of plastic hardening on surface deformation modes around Vickers and spherical indents, Acta Mater. 48(13), 3451–3464 (2000), https://doi.org/10.1016/S1359-6454(00)00140-3 [CrossRef] [Google Scholar]
- O. Bartier, X. Hernot, G. Mauvoisin, Theoretical and experimental analysis of contact radius for spherical indentation, Mech. Mater. 42(6), 640–656 (2010), https://doi.org/10.1016/j.mechmat.2010.03.003 [CrossRef] [Google Scholar]
- J.-M. Collin, G. Mauvoisin, R. El Abdi, An experimental method to determine the contact radius changes during a spherical instrumented indentation, Mech. Mater. 40(4), 401–406 (2008), https://doi.org/10.1016/j.mechmat.2007.10.002 [CrossRef] [Google Scholar]
- C. Schneider-Maunoury, A. Albayda, O. Bartier, On the use of instrumented indentation to characterize the mechanical properties of functionally graded binary alloys manufactured by additive manufacturing, Mater. Today Commun. 25, 101451 (2020), https://doi.org/10.1016/j.mtcomm.2020.101451 [CrossRef] [Google Scholar]
- C. Moussa, O. Bartier, X. Hernot, et al., Mechanical characterization of carbonitrided steel with spherical indentation using the average representative strain, Mater. Des. 89, 1191–1198 (2016), https://doi.org/10.1016/j.matdes.2015.10.067 [CrossRef] [Google Scholar]
- A. Nayebi, R. El Abdi, O. Bartier, et al., New procedure to determine steel mechanical parameters from the spherical indentation technique, Mech. Mater. 34(4), 243–254 (2002), https://doi.org/10.1016/S0167-6636(02)00113-8 [CrossRef] [Google Scholar]
- D. Tabor, The Hardness of Metals, Oxford University Press, Oxford, New York, 2000 [Google Scholar]
- J.-H. Ahn, D. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect, J. Mater. Res. 16(11), 3170–3178 (2001), https://doi.org/10.1557/JMR.2001.0437 [CrossRef] [Google Scholar]
- E. Jeon, M. Baik, S. Kim, et al., Determining representative stress and representative strain in deriving indentation flow curves based on finite element analysis, Key Eng. Mater. 297-300, 2152–2157 (2005), https://doi.org/10.4028/www.scientific.net/KEM.297-300.2152 [CrossRef] [Google Scholar]
- H. O’Neill, Hardness measurement of metals and alloys, 2nd ed., Springer, U.S., 1967, [online] https://www.springer.com/gp/book/9781504125215 (accessed 02/04/2021) [Google Scholar]
- W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7(6), 1564–1583 (1992), https://doi.org/10.1557/JMR.1992.1564 [CrossRef] [Google Scholar]
- B. Taljat, T. Zacharia, F. Kosel, New analytical procedure to determine stress–strain curve from spherical indentation data, Int. J. Solids Struct. 35(33), 4411–4426 (1998), https://doi.org/10.1016/S0020-7683(97)00249-7 [CrossRef] [Google Scholar]
- Y. Cao, J. Lu, A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve, Acta Mater. 52, 4023–4032 (2004), https://doi.org/10.1016/j.actamat.2004.05.018 [CrossRef] [Google Scholar]
- Y. Cao, X. Qian, N. Huber, Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain, Mater. Sci. Eng. A 454-455, 1–13 (2007), https://doi.org/10.1016/j.msea.2007.01.002 [CrossRef] [Google Scholar]
- M. Zhao, N. Ogasawara, N. Chiba, et al., A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation, Acta Mater. 1(54), 23–32 (2006), https://doi.org/10.1016/j.actamat.2005.08.020 [CrossRef] [Google Scholar]
- N. Ogasawara, N. Chiba, X. Chen, A simple framework of spherical indentation for measuring elastoplastic properties, Mech. Mater. 41, 1025–1033 (2009), https://doi.org/10.1016/j.mechmat.2009.04.010 [CrossRef] [Google Scholar]
- E. Jeon, J.-Y. Kim, M.-K. Baik, et al., Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves, Mater. Sci. Eng. A 419(1), 196–201 (2006), https://doi.org/10.1016/j.msea.2005.12.012 [CrossRef] [Google Scholar]
- M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper, Acta Mater. 46(9), 3047–3056 (1998), https://doi.org/10.1016/S1359-6454(98)00010-X [CrossRef] [Google Scholar]
- J.H. Lee, T. Kim, H. Lee, A study on robust indentation techniques to evaluate elastic–plastic properties of metals, Int. J. Solids Struct. 47(5), 647–664 (2010), https://doi.org/10.1016/j.ijsolstr.2009.11.003 [CrossRef] [Google Scholar]
- C. Yu, Y. Feng, R. Yang, et al., An integrated method to determine elastic–plastic parameters by instrumented spherical indentation, J. Mater. Res. 29(9), 1095–1103 (2014), https://doi.org/10.1557/jmr.2014.78 [CrossRef] [Google Scholar]
- L. Meng, B. Raghavan, O. Bartier, et al., An objective meta-modeling approach for indentation-based material characterization, Mech. Mater. 107, 31–44 (2017), https://doi.org/10.1016/j.mechmat.2017.01.011 [CrossRef] [Google Scholar]
- C. Moussa, X. Hernot, O. Bartier, et al., Evaluation of the tensile properties of a material through spherical indentation: definition of an average representative strain and a confidence domain, J. Mater. Sci. 2013, https://doi.org/10.1007/s10853-013-7739-1 [Google Scholar]
- M. Idriss, O. Bartier, G. Mauvoisin, et al., Determining the stress level of monotonic plastically pre-hardened metal sheets using the spherical instrumented indentation technique, J. Mech. Sci. Technol. 33, 183–195 (2019), https://doi.org/10.1007/s12206-018-1218-1 [CrossRef] [Google Scholar]
- P. Jiang, T. Zhang, R. Yang, Experimental verification for an instrumented spherical indentation technique in determining mechanical properties of metallic materials, J. Mater. Res. 26(11), 1414–1420 (2011), https://doi.org/10.1557/jmr.2011.51 [CrossRef] [Google Scholar]
- T. Zhang, S. Wang, W. Wang, Method to determine the optimal constitutive model from spherical indentation tests, Results Phys. 8, 716–727 (2018), https://doi.org/10.1016/j.rinp.2018.01.019 [CrossRef] [Google Scholar]
- L. Meng, P. Breitkopf, B. Raghavan, et al., On the study of mystical materials identified by indentation on power law and Voce hardening solids, Int. J. Mater. Form. 12(4), 587–602 (2019), https://doi.org/10.1007/s12289-018-1436-1 [CrossRef] [Google Scholar]
- M.M. Chaudhri, Subsurface plastic strain distribution around spherical indentations in metals, Philos. Mag. A 74(5), 1213–1224 (1996), https://doi.org/10.1080/01418619608239721 [CrossRef] [Google Scholar]
- O. Bartier, X. Hernot, G. Mauvoisin, et al., Comparaison entre les déformations représentatives de l’indentation Vickers et de l’indentation sphérique, Matér. Tech. 101(3), Art. no. 3 (2013), https://doi.org/10.1051/mattech/2013072 [Google Scholar]
- X. Hernot, C. Moussa, O. Bartier, Study of the concept of representative strain and constraint factor introduced by Vickers indentation, Mech. Mater. 68, 1–14 (2014), https://doi.org/10.1016/j.mechmat.2013.07.004 [CrossRef] [Google Scholar]
- Abaqus documentation, https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm (accessed 10/21/2021) [Google Scholar]
- H. Lee, J. Haeng Lee, G.M. Pharr A numerical approach to spherical indentation techniques for material property evaluation, J. Mech. Phys. Solids. 53(9), 2037–2069 (2005) https://doi.org/10.1016/j.jmps.2005.04.007 [CrossRef] [Google Scholar]
- J.R. Matthews, Indentation hardness and hot pressing, Acta Metall. 28(3), 311–318 (1980) [CrossRef] [Google Scholar]
- R. Hill, B. Storåkers, A.B. Zdunek, A theoretical study of the Brinell hardness test, Proc. R. Soc. Lond. Math. Phys. Sci. 423(1865), 301–330 (1989), https://doi.org/10.1098/rspa.1989.0056 [Google Scholar]
- X. Hernot, O. Bartier, Y. Bekouche, et al., Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation, Int. J. Solids Struct. 43(14-15), 4136–4153 (2006), https://doi.org/10.1016/j.ijsolstr.2005.06.007 [CrossRef] [Google Scholar]
- S.H. Kim, B.W. Lee, Y. Choi, et al., Quantitative determination of contact depth during spherical indentation of metallic materials – A FEM study, Mater. Sci. Eng. A 1-2(415), 59–65 (2006), https://doi.org/10.1016/j.msea.2005.08.217 [CrossRef] [Google Scholar]
- M. Kim, K.P. Marimuthu, J.H. Lee, et al., Spherical indentation method to evaluate material properties of high-strength materials, Int. J. Mech. Sci. 106, 117–127 (2016), https://doi.org/10.1016/j.ijmecsci.2015.12.008 [CrossRef] [Google Scholar]
- Python Release Python 3.3.0, Python.org., https://www.python.org/downloads/release/python-330/ (accessed 10/21/2021) [Google Scholar]
- O. Bartier, X. Hernot, Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material, Int. J. Solids Struct. 49, 2015–2026 (2012), https://doi.org/10.1016/j.ijsolstr.2012.04.005 [CrossRef] [Google Scholar]
- Y.Y. Lim, M.M. Chaudhri, Indentation of rigid cones into conical holes molded in elastic blocks, J. Appl. Phys. 98(7), 073518 (2005), https://doi.org/10.1063/1.2060933 [CrossRef] [Google Scholar]
- A.J. Cackett, C.D. Hardie, J.J.H. Lim, et al., Spherical indentation of copper: Crystal plasticity vs. experiment, Materialia 7, 100368 (2019), https://doi.org/10.1016/j.mtla.2019.100368 [CrossRef] [Google Scholar]
- J.J. Roa, E. Jiménez-Piqué, X.G. Capdevila, et al., Nanoindentation with spherical tips of single crystals of YBCO textured by the Bridgman technique: Determination of indentation stress–strain curves, J. Eur. Ceram. Soc. 30(6), 1477–1482 (2010), https://doi.org/10.1016/j.jeurceramsoc.2009.10.021 [CrossRef] [Google Scholar]
- L. Chen, A. Ahadi, J. Zhou, et al., Numerical and experimental study of the roughness effects on mechanical properties of AISI316L by nanoindentation, Model. Numer. Simul. Mater. Sci. 4(4), Art. no. 4 (2014), https://doi.org/10.4236/mnsms.2014.44017 [Google Scholar]
- D. Chicot, H. Ageorges, M. Voda, Hardness of thermal sprayed coatings: Relevance of the scale of measurement, Surf. Coat. Technol. 268, 173–179 (2015), https://doi.org/10.1016/j.surfcoat.2014.04.043 [CrossRef] [Google Scholar]
- O. Iracheta, C.J. Bennett, W. Sun, The influence of the indentation size in relation to the size of the microstructure of three polycrystalline materials indented with a Berkovich indenter, Mater. Sci. Eng. A., (2017), https://doi.org/10.1016/j.msea.2017.08.023 [Google Scholar]
- D.M. De Bono, T. London, M. Baker, et al., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, Int. J. Mech. Sci. 123, 162–176 (2017), https://doi.org/10.1016/j.ijmecsci.2017.02.006 [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.