Free Access
Review
Issue |
Matériaux & Techniques
Volume 111, Number 2, 2023
Special Issue on ‘The role of Hydrogen in the transition to a sustainable steelmaking process’; edited by Ismael Matino and Valentina Colla
|
|
---|---|---|
Article Number | 201 | |
Number of page(s) | 17 | |
Section | Materials production and processing | |
DOI | https://doi.org/10.1051/mattech/2023003 | |
Published online | 14 June 2023 |
- B. Latour, Où atterrir, comment s’orienter en politique, La Découverte, 2017, 156 p. [Google Scholar]
- CO2-Earth, Global Carbon Project, https://www.co2.earth/global-co2-emissions [Google Scholar]
- M. Crippa, D. Guizzardi, M. Banja, et al., CO2 emissions of all world countries, in: JRC Science for Policy Report, European Commission, EUR 31182 EN, 2022 [Google Scholar]
- P.R. Shukla, R. Slade, A. Al Khourdajie, et al., Climate Change 2022, Mitigation of Climate Change Summary for Policymakers, Working Group III contribution to the WGIII Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 2022, ISBN 978-92-9169-160-9 [Google Scholar]
- Land Use, Land-Use Change and Forestry (LULUCF), United Nations, Climate Change, https://unfccc.int/topics/land-use/workstreams/land-use-land-use-change-and-forestry-lulucf [Google Scholar]
- EU Carbon Price Tracker, The latest data on EU ETS carbon prices, https://ember-climate.org/data/data-tools/carbon-price-viewer/ [Google Scholar]
- I. Matino, V. Colla (Eds.), Overview, state of the art, recent developments and future trends regarding hydrogen route for a green steel making process, Mater. Tech 110(2) (2022), special issue, https://www.mattech-jo2022urnal.org/component/toc/?task=topic&id=1591 [Google Scholar]
- F. Patisson, O. Mirgaux, J.-P. Birat, Hydrogen steelmaking. Part 1: physical chemistry and process metallurgy, Mater. Tech. 109(3–4), 303 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- J.-P. Birat, F. Patisson, O. Mirgaux, Hydrogen steelmaking, part 2: competition with other zero-carbon steelmaking solutions and geopolitical issues, Mater. Tech. 109(3–4), 307 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- B. Sovacool, Industrial decarbonization via hydrogen: a critical and systematic review of develop-ments, socio-technical systems and policy options, Energy Res. Soc. Sci. 80(102208), 1–65 (2021) [Google Scholar]
- L. Ren, S. Zhou, X. Ou, The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: the case of China, Renew. Sustain. Energy Rev. 171, 113026 (2023) [CrossRef] [Google Scholar]
- S. Pye, D. Welsby, W. McDowall, et al., Regional uptake of direct reduction iron production using hydrogen under climate policy, Energy and Climate Change (2022) [Google Scholar]
- W. Sun, Q. Wang, Z. Zheng, et al., Material-energy-emission nexus in the integrated iron and steel industry, Energy Convers. Manag. 213, 112828 (2020) [CrossRef] [Google Scholar]
- MIDREX NG, MIDREX, https://www.midrex.com/technology/midrex-process/midrex-ng/ [Google Scholar]
- M. Corbella, Production of green pig iron without CO2 emissions, A proven CO2-free alternative to Blast Furnaces production,. Tenova S.p.A., Partnership event@EUGREENWEEK, 30 May–6 June 2022, CSP Webinar, online [Google Scholar]
- MIDREX®, The world’s leading DRI production process, https://www.primetals.com/portfolio/ironmaking/midrexr [Google Scholar]
- B.J. Macmullan, Le procédé “H-Iron”, Rev. Met. Paris 61(7–8), 635–638 (1964) [CrossRef] [EDP Sciences] [Google Scholar]
- CIRCORED hydrogen-based reduction, METSO-OTTO-TEC, https://www.mogroup.com/portfolio/circored-hydrogen-based-reduction/ [Google Scholar]
- Zero-Carbon HYFOR direct-reduction pilot plant starts operation, 2021, https://magazine.primetals.com/2021/06/24/zero-carbon-hyfor-direct-reduction-pilot-plant-commences-operation-in-donawitz-austria/ [Google Scholar]
- R. Eisl, M. Hochwimmer, C. Oppeneiger, et al., Hydrogen based direct iron ore reduction plant simulation, BHM Berg- und Hüttenmännische Monatshefte 167, 92–98 (2022), https://doi.org/10.1007/s00501-022-01199-2 [CrossRef] [Google Scholar]
- POSCO starts to design the HyREX demonstration plant, 2022/08/23, POSCO, https://newsroom.posco.com/en/posco-starts-to-design-the-hyrex-demonstration-plant/ [Google Scholar]
- O. Hessling, M. Tottie, D. Sichen, Experimental study on hydrogen reduction of industrial fines in fluidized bed, Ironmak. Steelmak. 48(8), 936–943 (2021) [CrossRef] [Google Scholar]
- https://www.energy.gov/sites/prod/files/2016/12/f34/fcto_h2atscale_workshop_sohn.pdf [Google Scholar]
- T. Wolfinger, D. Spreitzer, J. Schenk, Using iron ore ultra-fines for hydrogen-based fluidized bed direct reduction—A mathematical evaluation, Materials 15, 3943 (2022), https://doi.org/10.3390/ma15113943 [CrossRef] [Google Scholar]
- J. Murilo Mourão, I. Cameron, M. Huerta, et al., Comparison of sinter and pellet usage in an integrated steel plant, Technical contribution to the 43rd Ironmaking and Raw Materials Seminar, in: 12th Brazilian Symposium on Iron Ore and 1st Brazilian Symposium on Agglomeration of Iron Ore, September 1st to 4th, 2013, Belo Horizonte, MG, Brazil [Google Scholar]
- J.J. Poveromo, Iron ores, chapter 8, in: The making, shaping and treating of steel, 11th ed., Ironmaking volume [Google Scholar]
- C. Barrington, J.J. Poveromo, DRI and the pathway to carbon-neutral steelmaking: iron ore challenges, 2022 Sustainable industrial processing summit and exhibition Volume 1, in: International Symposium on Sustainable Iron and Steel Making [Google Scholar]
- M. Ericson, RMG Consulting, personal communication, 2022 [Google Scholar]
- P. Buchholz, M. Ericsson, V. Steinbach, Breakthrough technologies and innovations along the mineral raw materials supply chain — towards a sustainable and secure supply, Miner. Econ. 35, 345–347 (2022) [CrossRef] [Google Scholar]
- LKAB, Today’s waste becomes tomorrow’s resources, The ReeMAP Project, https://ree-map.com/about-reemap/reemap-industrial-park/ [Google Scholar]
- Open Slag Bath Furnace for Hot Metal production (OSBF), https://tenova.com/technologies/open-slag-bath-furnace-hot-metal-production-osbf [Google Scholar]
- P. Cavaliere, Hydrogen assisted direct reduction of iron oxides, Springer, 2022, 399 p. [CrossRef] [Google Scholar]
- Open Slag Bath Smelting Plant, METSO-OUTOTEC, https://www.mogroup.com/portfolio/open-slag-bath-smelting-plant/ [Google Scholar]
- P. Cavaliere, A. Perrone, A. Silvello, et al., Integration of open slag bath furnace with direct reduction reactors for new-generation steelmaking, Metals 12, 203 (2022) [CrossRef] [Google Scholar]
- F. Ahrenhold, TKS, Hydrogen Iron & Steel Making Forum 2022, Stockholm, 12–13 October, 2022 [Google Scholar]
- tkH2Steel®: with hydrogen toward carbon-neutral steel, https://www.thyssenkrupp-steel.com/en/company/sustainability/climate-strategy/ [Google Scholar]
- Neutralité carbone : objectif 2050, ArcelorMittal France, https://france.arcelormittal.com/neutralite-carbone/ [Google Scholar]
- Tata Steel, the leading international steelmaker, has announced plans to pursue a fully sustainable future for its steelworks in IJmuiden, the Netherlands, by adopting a hydrogen route, Tata Steel Europe, 15 September 2021, https://www.tatasteeleurope.com/corporate/news/tata-steel-opts-for-hydrogen-route-at-its-ijmuiden-steelworks [Google Scholar]
- D. Algermissen, New “slags” for the cement industry, Partnership event@EUGREENWEEK, 30 May–6 June 2022, CSP Webinar, online [Google Scholar]
- J.-P. Birat, J.-M. Delbecq, E. Hess, et al., Slag, steel and greenhouse gases, La revue de Métallurgie-CIT, 13–21 (2002) [CrossRef] [EDP Sciences] [Google Scholar]
- Direct Reduced Iron (DRI), IIMA, https://www.metallics.org/dri.html [Google Scholar]
- CALDERYS refractory solutions to support steelmakers towards their transition to green steel, https://www.calderys.com/news/calderys-refractory-solutions-to-support-steelmakers-towards-their-transition-to-green-steel [Google Scholar]
- KELSEN tackles the technology challenges facing refractory products for the iron and steel industry by participating in the H-ACERO project, https://www.calcinor.com/en/news/corporative/h-acero-project [Google Scholar]
- T. Leber, S. Madeo, T. Tonnesen, et al., Corrosion of bauxite-based refractory castables and matrix components in hydrogen containing atmosphere, Int. J. Ceram. Eng. Sci. 4, 16–22 (2022) [CrossRef] [Google Scholar]
- S. Li, D. Chen, H. Gu, et al., Investigation on application prospect of refractories for hydrogen metallurgy: the enlightenment from the reaction between commercial brown corundum and hydrogen. Materials 15, 7022 (2022) [CrossRef] [Google Scholar]
- J.G. Hemrick, Refractory issues related to the use of hydrogen as an alternative fuel, Am. Ceram. Soc. Bull. 101(2), www.ceramics.org [Google Scholar]
- M. Dargaud, Development of refractory solutions to ensure the sustainable transition to green hydrogen-based steelmaking, in: “H2 for Green Steel, 2nd International Conference”, Jouy-en-Josas, 29 November−1st December, 2022 [Google Scholar]
- B. Nakanishi, Ceramics for enhanced hydrogen heating: challenges and opportunities for improving combustion, energy efficiency, and material compatibility, in: “H2 for Green Steel, 2nd International Conference”, Jouy-en-Josas, 29 November−1st December, 2022 [Google Scholar]
- Electrolyzers, IEA, 2022, https://www.iea.org/reports/electrolyzers [Google Scholar]
- A. Zaccara, A. Petrucciani, I. Matino, et al., Renewable hydrogen production processes for the off-gas valorization in integrated steelworks through hydrogen intensified methane and methanol syntheses, Metals 10, 1535 (2020), https://doi.org/10.3390/met10111535 [CrossRef] [Google Scholar]
- S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis − A review, Mater. Sci. Energy Technol. 2, 442–454 (2019) [Google Scholar]
- Siemens Energy and Air Liquid form a joint venture for the European production of large scale renewable hydrogen electrolyzers, Press release, 23 June 2022, https://press.siemens-energy.com/global/en/pressrelease/siemens-energy-and-air-liquide-form-joint-venture-european-production-large-scale [Google Scholar]
- Green hydrogen: John Cockerill takes another step towards setting up a gigafactory in France, Press release, 12 June 2021, https://johncockerill.com/en/press-and-news/news/green-hydrogen-john-cockerill-takes-another-step-towards-setting-up-a-gigafactory-in-france/ [Google Scholar]
- John Cockerill to develop mega electrolyzer factory in Morocco, Process Worldwide, 12 January 2023, https://www.process-worldwide.com/john-cockerill-to-develop-mega-electrolyzer-factory-in-morocco-a-6329f565719d7290f873732c017c45c9/ [Google Scholar]
- World’s largest high-temperature electrolyzer achieves record efficiency, Salzgitter Press Release, 19 April 2022, https://www.salzgitter-ag.com/en/newsroom/press-releases/details/worlds-largest-high-temperature-electrolyzer-achieves-record-efficiency-19500.html [Google Scholar]
- S. Bouckaert, A. Fernandez Pales, C. McGlade, et al., Laszlo Varro, Davide D’Ambrosio and Thomas Spencer (core team), Net Zero by 2050 – A roadmap for the global energy sector, IEA, 2021, https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf [Google Scholar]
- S. Cornot, La sidérurgie européenne se prépare pour être à la pointe de la décarbonation, Notes de l’IFRI, 2023 [Google Scholar]
- J.-P. Birat, A. Carvallo Aceves, Territorial sustainability footprint, Rev. Métall. 109, 323–331 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
- D. Gielen, D. Saygin, E. Taibi, et al., Renewables-based decarbonization and relocation of iron and steel making: a case study. J. Ind. Ecol. 1–13 (2020) [Google Scholar]
- A faster pace and higher targets in LKAB’s transition towards a sustainable future, 26 April 2022, https://lkab.com/en/press/a-faster-pace-and-higher-targets-in-lkabs-transition-towards-a-sustainable-future/ [Google Scholar]
- Fit for 55, European Commission, 11 November 2022, https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ [Google Scholar]
- J. Wilkins, K. Kinetic, S. Kinetic, et al., Steam bio-oil reformation for carbon negative steel production at Charm Industrial, in: SAM-16 conference, 8–9 November 2022, online [Google Scholar]
- E. Bellevrat, P. Menanteau, Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling, La Revue de Métallurgie-CIT, 318–324 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- JP. Birat, JP. Lorrain, Y. de Lassat, The “CO2 tool”: CO2 emissions and energy consumption of existing and breakthrough steelmaking routes, La Revue de Métallurgie-CIT, 325–333 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- JP. Birat, JP. Lorrain, Y. de Lassat, The “cost tool”, La Revue de Métallurgie-CIT, 337–349 (2009) [CrossRef] [EDP Sciences] [Google Scholar]
- S. Budinis, P. Levi, H. Mandová, et al., Iron and steel technology roadmap, towards more sustainable steelmaking, 2020, https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf [Google Scholar]
- Making Net-Zero Steel Possible, An industry-backed, 1.5 °C-aligned transition strategy, Steel transition strategy, 2022, 80 p. [Google Scholar]
- C. Bataille, S. Stiebert, F.G.N. Li, Net Zero Steel, Global Facility Level Net-Zero Steel Pathways, Technical Report on the First Scenarios of The Net-Zero Steel Project, IDDRI-Global energy monitor, 2021, 32 p [Google Scholar]
- P. Chaubal, Decarbonizing steel production: challenges & opportunities, in: 4th EMECR – International Conference on Energy and Material Efficiency and CO2 Reduction in the Steel Industry 2022, 7 June 2022 [Google Scholar]
- Climate Action Report 2 July 2021, ArcelorMittal, 68 p., https://constructalia.arcelormittal.com/files/Climate_Action_Report_2_July_2021-94aa5d83ef86cd03ec059ef8d1728966.pdf [Google Scholar]
- What we do, Northern Lights, 2022, https://norlights.com/what-we-do/ [Google Scholar]
- Tenova to supply DRI technology for ArcelorMittal Dofasco plant in Canada, 14 October 2022, https://greensteelworld.com/tenova-to-supply-dri-technology-for-arcelormittal-dofasco-plant-in-canada [Google Scholar]
- https://greensteelworld.com/tata-steel-selects-mcdermott-to-manage-hydrogen-based-steel-production [Google Scholar]
- https://salcos.salzgitter-ag.com/en/index.html [Google Scholar]
- Green Industrial Hydrogen via steam electrolysis, H 2020 project, https://cordis.europa.eu/project/id/826350 [Google Scholar]
- https://www.stahl-holding-saar.de/shs/en/holding/sustainability/sustainable-steel-production/index.shtml [Google Scholar]
- Our path to a green future, voestalpîne, https://www.voestalpine.com/blog/en/commitment/greentec-steel/our-path-to-a-green-future/ [Google Scholar]
- H2FUTURE: world’s largest “green” hydrogen pilot facility successfully commences operation, voestalpine, https://www.voestalpine.com/group/en/media/press-releases/2019-11-11-h2future-worlds-largest-green-hydrogen-pilot-facility-successfully-commences-operation/ [Google Scholar]
- M. Pei, M. Petäjäniemi, A. Regnell, et al., Toward a fossil free future with HYBRIT: development of iron and steelmaking technology in Sweden and Finland, Metals 10, 972 (2020), https://doi.org/10.3390/met10070972 [CrossRef] [Google Scholar]
- ECONIQ™: The world’s first net-zero steel, NUCOR, https://nucor.com/econiq [Google Scholar]
- Roadmap to 2050, US Steel, https://www.ussteel.com/roadmap-to-2050 [Google Scholar]
- A. Eggert, Enabling policy framework for innovative technologies as key for steel transition, The Clean Steel Partnership, “A driver to net zero, from research to deployment of ground-breaking technologies for steel”, ESTEP seminar, 1st June 2022 [Google Scholar]
- V. Vogl, F. Sanchez, T. Gerres, et al., Green Steel tracker, 2021, https://www.industrytransition.org/green-steel-tracker/ [Google Scholar]
- To the future of the low carbon blast furnace CO2 ultimate reduction system for Cool Earth 50 (COURSE50) project, https://www.course50.com/en/ [Google Scholar]
- S. Nomura, Chapter 23 – Low carbon ironmaking technologies: Japan’s approach, in iron ore (second edition), in: Mineralogy, processing and environmental Sustainability, Woodhead Publishing Series in Metals and Surface Engineering, 2022, pp. 751–776 [Google Scholar]
- K. Hase, JFE Steel, Hydrogen Iron & Steel Making Forum 2022, Stockholm, 12–13 October, 2022 [Google Scholar]
- X. Mao, Baowu, Hydrogen Iron & Steel Making Forum 2022, Stockholm, 12–13 October, 2022 [Google Scholar]
- https://www.danieli.com/en/news-media/news/second-ENERGIRON-dri-plant-china_37_743.htm# [Google Scholar]
- https://www.hbisco.com/site/en/groupnewssub/info/2021/15999.html [Google Scholar]
- W. Hall, S. Kumar, S. Kashyap, et al., Achieving green steel: roadmap to a net zero steel sector in India, The Energy and Resources institute (TERi), New Delhi, 2022 [Google Scholar]
- J.-P. Birat, La décarbonation de la filière sidérurgique : les enjeux du défi de l’« acier vert », Ann. Mines Réal. Ind. 4(2024), 77–80 (2022) [Google Scholar]
- B. D’hont, The potential of hydrogen for the chemical industry, Deloitte, 2021, https://www2.deloitte.com/content/dam/Deloitte/xe/Documents/energy-resources/me_pov-hydrogen-chemical-industry.pdf [Google Scholar]
- F.T.C. Röben, N. Schöne, U. Bau, et al., Decarbonizing copper production by power-to-hydrogen: a techno-economic analysis, J. Clean. Prod. 306, 127191 (2021) [CrossRef] [Google Scholar]
- D. Perilli, Green hydrogen for grey cement, Global Cement, 2020, https://www.globalcement.com/news/item/11061-green-hydrogen-for-grey-cement [Google Scholar]
- Technology Roadmap, Low-Carbon Transition in the Cement Industry, IEA, 2018, 61 p., https://iea.blob.core.windows.net/assets/cbaa3da1-fd61-4c2a-8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf [Google Scholar]
- Présentation de la stratégie nationale pour le développement de l’hydrogène décarboné en France, 2020, https://www.economie.gouv.fr/presentation-strategie-nationale-developpement-hydrogene-decarbone-france# et https://minefi.hosting.augure.com/Augure_Minefi/r/ContenuEnLigne/Download?id=5C30E7B2-2092-4339-8B92-FE24984E8E42&filename=DP%20-%20Stratégie%20nationale%20pour%20le%20développement%20de%20l%27hydrogène%20décarboné%20en%20France.pdf [Google Scholar]
- Germany’s hydrogen industrial strategy, 2021, https://www.csis.org/analysis/germanys-hydrogen-industrial-strategy [Google Scholar]
- A hydrogen strategy for a carbon-neutral Europe, European Commission, COM, Brussels, 2020, 301 [Google Scholar]
- J.-P. Birat, Materials are social constructs, but they also have agency, Leiv Kolbensein Symposium, Trondheim, 2 November 2022, organized by SFI Metal Production [Google Scholar]
- World Health Organization (WHO), Ambient air pollution: a global assessment of exposure and burden of disease, WHO, Geneva, 2016, ISBN 978-92-4-151-135-3 [Google Scholar]
- R. Fuller, P.J. Landrigann, K. Balakrishnan, et al., Pollution and health: a progress update, Lancet Planet. Health Rev 6(6), E535–E547 (2022) [Google Scholar]
- J.-P. Birat, Society, materials, and the environment: the case of steel, in: L. Holappa (Ed.), Challenges and prospects of steelmaking towards the year 2050, reprinted from: Metals 10, 331 (2020), https://doi.org/10.3390/met10030331 [Google Scholar]
- Collapsology, Wikipedia in English, https://en.wikipedia.org/wiki/Collapsology [Google Scholar]
- P. Charbonnier, The splendor and squalor of collapsology. What the survivalists of the left fail to consider, Revue du Crieur (2), 88–95 (2019) [CrossRef] [Google Scholar]
- Apocalyptic and post-apocalyptic fiction, Wikipedia in English, https://en.wikipedia.org/wiki/Apocalyptic_and_post-apocalyptic_fiction [Google Scholar]
- Imagining environmental justice in a postcolonial world, in: EACLALS Triennial Conference 2023, 6–10 June 2023, Sorbonne Nouvelle University [Google Scholar]
- B.M.S. Campbell, The great transition, climate, disease and society in the late-medieval world, Cambridge University Press, 2016, 463 p. [Google Scholar]
- S.W. Manning, C.S. Kocik, B. Lorentzen, et al., Severe multi-year drought coincident with Hittite collapse around 1198 −1196 BC, Nature, published online, 5 February 2023 [Google Scholar]
- J. Diamond, Collapse, how societies choose to fall or succeed, Penguin, 2011 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.