Open Access
Matériaux & Techniques
Volume 110, Number 3, 2022
Article Number 303
Number of page(s) 17
Section Essais, mesure, contrôle non destructif / Testing, measurement and non destructive testing
Published online 02 August 2022
  1. S. Ahmed, S. Salehi, C.P. Ezeakacha, et al., Experimental investigation of elastomers in downhole seal elements: Implications for safety, Polym. Test. 76, 350–364 (2019), j.polymertesting.2019.03.041 [CrossRef] [Google Scholar]
  2. M. Najipoor, L. Haroonabadi, A. Dashti, Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: Effect of physico-mechanical properties, Polym. Test. 72, 377–385 (2018), j.polymertesting.2018.11.002 [CrossRef] [Google Scholar]
  3. S. Ahmed, H. Patel, S. Salehi, Numerical modeling and experimental study of elastomer seal assembly in downhole wellbore equipment: Effect of material and chemical swelling, Polym. Test. 89, 1–15 (2020), j.polymertesting.2020.106608 [Google Scholar]
  4. B. Alcock, T.A. Peters, A. Tiwari, The effect of hot air exposure on the mechanical properties and carbon dioxide permeability of hydrogenated nitrile butadiene rubber (HNBR) with varying carbon black content, Polym. Test. 82, 1–10 (2020), j.polymertesting.2019.106273 [CrossRef] [Google Scholar]
  5. B. Alcock, T.A. Peters, R.H. Gaarder, et al., The effect of hydrocarbon ageing on the mechanical properties, apparent crosslink density and CO2 diffusion of a hydrogenated nitrile butadiene rubber (HNBR), Polym. Test. 47, 22–29 (2015), j.polymertesting.2015.07.007 [CrossRef] [Google Scholar]
  6. T. Grelle, D. Wolff, M. Jaunich, Temperature-dependent leak tightness of elastomer seals after partial and rapid release of compression, Polym. Test. 48, 44–49 (2015), j.polymertesting.2015.09.009 [CrossRef] [Google Scholar]
  7. S.Z. Qamar, M. Akhtar, T. Pervez, et al., Mechanical and structural behavior of a swelling elastomer under compressive loading, Materials & Design 45, 487–496 (2013), j.matdes.2012.09.020 [CrossRef] [Google Scholar]
  8. B.J. Briscoe, T. Savvas, C.T. Kelly, Explosive decompression failure of rubbers – A review of the origins of pneumatic stress-induced rupture in elastomers, Rubber Chem. Technol. 67, 384–416 (1994), 1.3538683 [CrossRef] [Google Scholar]
  9. B.J. Briscoe, C.T. Kelly, The effect of structure on gas solubility and gas induced dilation in a series of poly(urethane) elastomers, Polymer 37, 3405–3410 (1996), 0032-3861(96)88488-6 [CrossRef] [Google Scholar]
  10. Z. Major, R.W. Lang, Characterization of the fracture behavior of NBR and FKM grade elastomers for oilfield applications, Eng. Fail. Anal. 17, 701–711 (2010), j.engfailanal.2009.08.004 [CrossRef] [Google Scholar]
  11. O.M. Davies, J.C. Arnold, S. Sulley, The mechanical properties of elastomers in high-pressure CO2, J. Mat. Sci. 34, 417–422 (1999), A:1004442614090 [CrossRef] [Google Scholar]
  12. L. Ansaloni, B. Alcock, T.A. Peters, Effects of CO2 on polymeric materials in the CO2 transport chain: A review, Int. J. GreenH. Gas Control. 94, 1–15 (2020), j.ijggc.2019.102930 [CrossRef] [Google Scholar]
  13. J.C. Legros, A. Mialdun, P. Strizhak, et al., Permeation of supercritical CO2 through perfluoroelastomers, J. Supercrit. Fluids 126, 1–13 (2017), j.supflu.2017.02.022 [CrossRef] [Google Scholar]
  14. L. Haroonabadi, A. Dashti, M. Najipour, Investigation of the effect of thermal aging on rapid gas decompression (RGD) resistance of nitrile rubber, Polym. Test. 67, 37–45 (2018), j.polymertesting.2018.02.014 [CrossRef] [Google Scholar]
  15. X. Chen, H.A. Salem, R. Zonoz, CO2 Solubility and diffusivity and rapid gas decompression resistance of elastomers containing CNT, Rubber Chem. Technol. 90, 562–574 (2017), rct.17.83726 [CrossRef] [Google Scholar]
  16. B. Bonavoglia, G. Storti, M. Morbidelli, et al., Sorption and swelling of semicrystalline polymers in supercritical CO2, J. Polym. Sci. Part B: Polym. Phys. 44, 1531–1546 (2006), polb.20799 [CrossRef] [Google Scholar]
  17. S. Shenoy, D. Woerdeman, R. Sebra, et al., Quantifying polymer swelling employing a linear variable differential transformer: CO2 effects on SBS triblock copolymer, Macromol. Rapid Commun. 23, 1130–1133 (2002), marc.200290007 [CrossRef] [Google Scholar]
  18. B. Schrittesser, G. Pinter, T. Schwarz, et al., Rapid gas decompression performance of elastomers – A study of influencing testing parameters, Proc. Struct. Integr. 2, 1746–1754 (2016), j.prostr.2016.06.220 [Google Scholar]
  19. J. Dubois, E. Grau, T. Tassaing, et al., On the CO2 sorption and swelling of elastomers by supercritical CO2 as studied by in situ high pressure FTIR microscopy, J. Supercrit. Fluids 131, 150–156 (2018), j.supflu.2017.09.003 [CrossRef] [Google Scholar]
  20. A. Rajendran, A. Bonavoglia, B. Forrer, et al., Simultaneous measurement of swelling and sorption in a supercritical CO2-poly(methyl methacrylate) system, Ind. Eng. Chem. Res. 44, 2549–2560 (2005), ie049523w [CrossRef] [Google Scholar]
  21. F. Daou, C.R. de Miranda, J.L. de Oliveira, et al., Swelling of elastomers in CO2 environment: Testing methodology and experimental data, in: SPE Latin America and Caribbean Petroleum Engineering Conference, Maracaibo, Venezuela SPE-169277-MS, (2014) [Google Scholar]
  22. K.J. Thurecht, D.J.T. Hill, A.K. Whittaker, Equilibrium swelling measurements of network and semicrystalline polymers in supercritical carbon dioxide using high pressure NMR, Macromolecules 38, 3731–3737 (2005), ma0503108 [CrossRef] [Google Scholar]
  23. S.K. Goel, E.J. Beckman, Modelling the swelling of crosslinked elastomers by supercritical fluids, Polymer 33, 5032–5039 (1992), 0032-3861(92)90054-Z [CrossRef] [Google Scholar]
  24. S. Salehi, C.P. Ezeakacha, G. Kwatia, et al., Performance verification of elastomer materials in corrosive gas and liquid conditions, Polym. Test. 75, 48–63 (2019), j.polymertesting.2019.01.015 [CrossRef] [Google Scholar]
  25. S. Hilic, S.A.E. Boyer, A.A.H. Padua, et al., Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling, J. Polym. Sci. Part B: Polym. Phys. 39, 2063–2070 (2001), polb.1181 [CrossRef] [Google Scholar]
  26. R.M.H. Felder, Permeation, diffusion, and sorption of gases and vapors, in: R.A. Fava, ed., Methods Exp. Physics, Part C: Polymer Physics, Academic Press, New York, 1980 [Google Scholar]
  27. Y. Kamiya, K. Mizoguchi, K. Terada, et al., CO2 sorption and dilation of poly(methyl methacrylate), Macromolecules 31, 472–478 (1998), ma970456+ [CrossRef] [Google Scholar]
  28. N.H. Brantley, S.G. Kazarian, C.A. Eckert, In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures, J. Appl. Polym. Sci. 77, 764–775 (2000), (SICI)1097-4628(20000725)77:4<764 [CrossRef] [Google Scholar]
  29. R.G. Wissinger, M.E. Paulaitis, Swelling and sorption in polymer-CO2 mixtures at elevated pressures, J. Polym. Sci Part B: Polym. Phys. 25, 2497–2510 (1987), polb.1987.090251206 [CrossRef] [Google Scholar]
  30. J.R. Royer, J.M. De Simone, S.A. Khan, Carbon dioxide-induced swelling of poly(dimethylsiloxane), Macromolecules 32, 8965–8973 (1999), 10.1021/ma9904518 [CrossRef] [Google Scholar]
  31. D.H. Ender, Elastomeric seals, Chem. Tech. 16, 52–57 (1986) [Google Scholar]
  32. E. Lainé, J.C. Grandidier, G. Benoit, et al., Effects of sorption and desorption of CO2 on the thermomechanical experimental behavior of HNBR and FKM O-rings – Influence of nanofiller-reinforced rubber, Polym. Test. 75, 298–311 (2019), j.polymertesting.2019.02.010 [CrossRef] [Google Scholar]
  33. E. Lainé, J.C. Grandidier, G. Benoit, et al., Non-contact method used to determine the swelling/shrinking coefficients under CO2 sorption/desorption on an HNBR O-ring – Study of coupling with temperature and pressure, Polym. Test. 85, 1–16 (2020), j.polymertesting.2020.106411 [Google Scholar]
  34. S. Castagnet, J.C. Grandidier, M. Comyn, et al., Effect of long-term hydrogen exposure on the mechanical properties of polymers used for pipes and tested in press urized hydrogen, Int. J. Press. Vessels Pip. 89, 203–209 (2012), j.ijpvp.2011.11.008 [CrossRef] [Google Scholar]
  35. S.A.E. Boyer, M. Gerland, S. Castagnet, Gas environment effect on cavitation damage in stretched PolyVinylidene Fluoride, Polym. Eng. Sci. 54, 2139–2146 (2014), pen.23759 [CrossRef] [Google Scholar]
  36. Z. Sun, G. Benoit, C. Moriconi, et al., Fatigue crack propagation under gaseous hydrogen in a precipitation-hardened martensitic stainless steel, Int. J. Hydrogen Energy 36, 8641–8644 (2011), j.ijhydene.2011.04.094 [CrossRef] [Google Scholar]
  37. S. Castagnet, J.C. Grandidier, M. Comyn, et al., Mechanical testing of polymers into pressurized hydrogen: tension, creep and ductile fracture, Exp. Mech. 52, 229–239 (2012) [CrossRef] [Google Scholar]
  38. G. Benoit, S.A.E. Boyer, S. Castagnet, et al., Mechanical testing in press urized hydrogen and carbon dioxide, in: The 10th BSSM International Conference on Advances in Experimental Mechanics, September 1st–3rd, Edinburg, Scotland, 2015 [Google Scholar]
  39. Nace Standard TM0192-98, Evaluating elastomeric materials in carbon dioxide decompression environments, 1998 [Google Scholar]
  40. Norsok Stand, M-710 Rev. 3 Qualification of non-metallic sealing materials and manufacturers, 2014 [Google Scholar]
  41. E. Lainé, J.C. Grandidier, G. Benoit, et al., Mechanical characterization under CO2 of HNBR and FKM grade elastomers for oilfield applications – Effects of 10GE reinforcements, Constitutive Models for Rubber X. Lion & Johlitz Eds, Talyor & Francis Group London, 231–236 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.