Open Access
Issue |
Matériaux & Techniques
Volume 110, Number 3, 2022
|
|
---|---|---|
Article Number | 304 | |
Number of page(s) | 12 | |
Section | Mise en oeuvre des matériaux / Materials processing | |
DOI | https://doi.org/10.1051/mattech/2022031 | |
Published online | 16 September 2022 |
- M.K. Thompson, G. Moroni, T. Vaneker, et al., Design for additive manufacturing: Trends, opportunities, considerations, and constraints, CIRP Ann. – Manuf. Technol. 65(2), 737–760 (2016) [CrossRef] [Google Scholar]
- Y. Al-Meslemi, N. Anwer, L. Mathieu, Modeling key characteristics in the value chain of additive manufacturing, Proc. CIRP 70 , 90–95 (2018) [CrossRef] [Google Scholar]
- I. Gibson, D.W. Rosen, B. Stucker, Additive manufacturing technologies – Rapid prototyping to direct digital manufacturing, Springer, 2009 [Google Scholar]
- Z. Baicheng, L. Xiaohua, B. Jiaming, et al., Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Materials & Design 116 , 531–537 (2017) [CrossRef] [Google Scholar]
- F. Salvatore, F. Grange, R. Kaminski, et al., Experimental and numerical study of media action during tribofinishing in the case of SLM titanium parts, Proc. CIRP 58 , 451–456 (2017) [CrossRef] [Google Scholar]
- K.C. Yung, T.Y. Xiao, H.S. Choy, et al., Laser polishing of additive manufactured CoCr alloy components with complex surface geometry, J. Mater. Process. Tech. 262 , 53–64 (2018) [CrossRef] [Google Scholar]
- E. Brinksmeier, G. Levy, D. Meyer, A.B. Spierings, Surface integrity of selective-laser-melted components, CIRP Ann. 59(1), 601–606 (2010) [CrossRef] [Google Scholar]
- P. Stavropoulos, P. Foteinopoulos, A. Papacharalampopoulos, et al., Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution, Int. J. Light. Mater. Manuf. 1(3), 157–168 (2018) [Google Scholar]
- K. Sanjay, Fabrication strategy. Additive manufacturing solutions, Springer, Cham, pp. 111–143, 2022 [Google Scholar]
- F. Calignano, Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting, J. Mater. 64 , 203–213 (2014) [CrossRef] [Google Scholar]
- A.T. Gaynor, J.K. Guest, Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design, Struct. Multidiscip. Optim. 54(5), 1157–1172 (2016) [CrossRef] [Google Scholar]
- Z. Chen, X. Wu, D. Tomus, et al., Davies, surface roughness of selective laser melted Ti–6Al–4V alloy components, Addit. Manuf. 21 , 91–103 (2018) [Google Scholar]
- T. Mishurova, S. Cabeza, T. Thiede, et al., The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts, Metall. Mater. Trans. A 49(7), 3038–3046 (2018) [CrossRef] [Google Scholar]
- P. Mercelis, J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J. 12(5), 254–265 (2006) [CrossRef] [Google Scholar]
- M.X. Gan, C.H. Wong, Practical support structures for selective laser melting, J. Mater. Process. Technol. 238 , 474–484 (2016) [CrossRef] [Google Scholar]
- A. Hussein, L. Hao, C. Yan, et al., Advanced lattice support structures for metal additive manufacturing, J. Mater. Process. Technol. 213(7), 1019–1026 (2013) [CrossRef] [Google Scholar]
- Y.H. Kuo, C.C. Cheng, Y.S. Lin, et al., Support structure design in additive manufacturing based on topology optimization, Struct. Multidiscip. Optim. 57(1), 183–195 (2019) [Google Scholar]
- L. Matthijs, Integrated component-support topology optimization for additive manufacturing with post-machining, Rapid Prototyp. J. 25(2), 255–265 (2019) [CrossRef] [Google Scholar]
- S. Seguy, G. Dessein, L. Arnaud, Surface roughness variation of thin wall milling, related to modal interactions, Int. J. Mach. Tools Manuf. 48(3-4), 261–274 (2008) [Google Scholar]
- P. Michalik, J. Zajac, J.M. Hatala, et al., Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling, Measurement 58 , 416–428 (2014) [CrossRef] [Google Scholar]
- P. Didier, G. Coz, G. Robin, et al., Consideration of SLM additive manufacturing supports on the stability of flexible structures in finish milling, J. Manuf. Process. 62 , 213–220 (2021) [CrossRef] [Google Scholar]
- P. Didier, G. Coz, G. Robin, et al., Consideration of additive manufacturing supports for post-processing by end milling: a hybrid analytical-numerical model and experimental validation, Prog. Addit. Manuf. 7(1), 15–27 (2022) [CrossRef] [Google Scholar]
- S. Jayaram, S.G. Kapoor, R.E. Devor, Estimation of the specific cutting pressures for mechanistic cutting force models, Int. J. Mach. Tools Manuf. 41(2), 265–281 (2001) [CrossRef] [Google Scholar]
- E. Budak, Y. Altintas, E. Armarego, Prediction of milling force coefficients from orthogonal cutting data, J. Manuf. Sci. Eng. 118(2), (1996) [Google Scholar]
- A. Moufki, D. Dudzinski, A. Molinari, et al., Thermoviscoplastic modelling of oblique cutting: forces and chip flow predictions, Int. J. Mech. Sci. 42(6), 1205–1232 (2000) [CrossRef] [Google Scholar]
- A. Moufki, D. Dudzinski, G. Le Coz, Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti–6Al–4V alloy, Int. J. Adv. Manuf. Technol. 81(1), 615–626 (2015) [CrossRef] [Google Scholar]
- J. Favre, P. Lohmuller, B. Piotrowski, et al., A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials, Addit. Manuf. 21 , 359–368 (2018) [Google Scholar]
- G.P. Steven, Homogenization of multicomponent composite orthotropic materials using FEA, Commun. Numer. Meth. Eng. 13(7), 517–531 (1997) [CrossRef] [Google Scholar]
- S. Xu, J. Shen, S. Zhou, et al., Design of lattice structures with controlled anisotropy, Materials & Design 93 , 443–447 (2016) [CrossRef] [Google Scholar]
- W.S.W. Harun, et al., A review of powdered additive manufacturing techniques for Ti–6Al–4V biomedical applications, Powder Technol. 331 , 74–97 (2018) [CrossRef] [Google Scholar]
- K. Moiduddin, A. Al-Ahmari, M.A. Kindi, et al., Customized porous implants by additive manufacturing for zygomatic reconstruction, Biocybern. Biomed. Eng. 36(4), 719–730 (2016) [CrossRef] [Google Scholar]
- C. Cosma, N. Balc, D. Leordean, et al. Customized medical applications of selective laser melting manufacturing, Acad. J. Manuf. Eng. 13(1), (2015) [Google Scholar]
- G. Odin, G. Scortecci, F. Levratto, et al., Techniques avancées en implantologie basale, 11(3), 1–10 (2011) [Google Scholar]
- D. Paul, Solutions matériaux et géométriques pour la réalisation de dispositifs médicaux implantables sur-mesure en alliages de titane : application aux implants endo-osseux et supra-osseux obtenus par fabrication additive, Thèse, Université de Lorraine, 2019 [Google Scholar]
- V.S. Deshpande, N.A. Fleck, M.F. Ashby, Effective properties of the octet-truss lattice material, 49 , 1747–1769 (2001) [Google Scholar]
- M. Arizmendi, F.J. Campa, J. Fernandez, et al., Model for surface topography prediction in peripheral milling considering tool vibration, CIRP Ann. – Manuf. Technol. 58(1), 93–96 (2009) [CrossRef] [Google Scholar]
- P.G. Benardos, G.C. Vosniakos, Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments, Robot. Comput. Integr. Manuf. 18(5-6), 343–354 (2002) [CrossRef] [Google Scholar]
- IMPLANT : Programme Opérationnel FEDER Lorraine et Massif des Vosges de l’Université de LORRAINE (2014–2020), LO0019216 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.