Issue
Matériaux & Techniques
Volume 108, Number 5-6, 2020
Materials and Society: transitions in society, materials and energy
Article Number 507
Number of page(s) 11
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2021007
Published online 26 April 2021
  1. United Nations, Transforming our world: the 2030 Agenda for Sustainable Development, 2015, https://sdgs.un.org/2030agenda (last access January 23, 2021) [Google Scholar]
  2. J.-P. Birat, E. Malfa, V. Colla, J.S. Thomas, SUSTAINABLE steel production for the 2030s: The vision of the European Steel Technology Platform’s Strategic Research Agenda (ESTEP’s SRA), in: Technical Proceedings of the2014 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2014, Vol. 3, 2014, pp. 238–241 [Google Scholar]
  3. A.N. Conejo, J.-P. Birat, A. Dutta, A review of the current environmental challenges of the steel industry and its value chain, J. Environ. Manag. 259, article no. 109782 (2020) [CrossRef] [Google Scholar]
  4. J.-P. Birat, Society, materials, and the environment: The case of steel, Metals 10(3), art. no. 331 (2020) [Google Scholar]
  5. J.-P. Birat, The environment and materials, from the standpoints of ethics, social sciences, law and politics, Materiaux & Techniques 107(1), art. no. 102 (2019) [Google Scholar]
  6. https://www.estep.eu/assets/Uploads/ec-rtd-he-partnerships-for-clean-steel-low-carbon-steelmaking.pdf (last access January 17, 2021) [Google Scholar]
  7. FOCUS Roland Berger, “ The future of steelmaking – How the European steel industry can achieve carbon neutrality”, in: Roland Berger GMBH, May 2020, 2020 [Google Scholar]
  8. M. Arens, Policy support for and R&D activities on digitising the European steel industry, Resour. Conserv. Recycl. 143, 244–250 (2019) [CrossRef] [Google Scholar]
  9. T.A. Branca, B. Fornai, V. Colla, M.M. Murri, E. Streppa, A.J. Schröder, The challenge of digitalization in the steel sector, Metals 10(2), art. no. 288 (2020) [Google Scholar]
  10. T. Akyazi, A. Oyarbide, A. Goti, J. Gaviria, F. Bayon, Creating a roadmap for professional skills in industry 4.0, Hydrocarb. Process. 99(11), (2020) [Google Scholar]
  11. A.B.L. de Sousa Jabbour, C.J.C. Jabbour, C. Foropon, M.G. Filho, When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors, Technol. Forecast. Social Change 132, 18–25 (2018) [CrossRef] [Google Scholar]
  12. Y. Li, J. Dai, L. Cui, The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model, Int. J. Prod. Econ. 229, article no. 107777 (2020) [Google Scholar]
  13. K. Tiwari, M. Khan S., Sustainability accounting and reporting in the industry 4.0, J. Clean. Prod. 258, (2020) [Google Scholar]
  14. V. Colla, Empowering steel manufacturing through Artificial Intelligence and Machine Learning, in: AI & Big Data for Innovation Summit, December 2–5 2019, organised by the K4I Forum in the European Parliament, Brussels (Belgium), 2019 [Google Scholar]
  15. G.F. Porzio, V. Colla, B. Fornai, M. Vannucci, M. Larsson, H. Stripple, Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap, Appl. Energy 161, 656–672 (2016) [CrossRef] [Google Scholar]
  16. I. Matino, T.A. Branca, B. Fornai, V. Colla, L. Romaniello, Scenario analyses for by-products reuse in integrated steelmaking plants by combining process modeling, simulation, and optimization techniques, Steel Res. Int. 90(10), art. no. 1900150 (2019) [CrossRef] [Google Scholar]
  17. V. Colla, I. Matino, F. Cirilli, et al., Improving energy and resource efficiency of electric steelmaking through simulation tools and process data analyses, Materiaux & Techniques 104(6-7), article no. 602 (2016) [Google Scholar]
  18. C. Schneider, S. Lechtenböhmer, Industrial site energy integration – The sleeping giant of energy efficiency? Identifying site specific potentials for vertical integrated production at the example of German steel production, in: Eceee Industrial Summer Study Proceedings, 2016, pp. 587–598 [Google Scholar]
  19. V. Colla, F. Cirilli, B. Kleimt, et al., Monitoring the environmental and energy impacts of electric arc furnace steelmaking, Materiaux & Techniques 104(1), art. no. 104 (2016) [Google Scholar]
  20. I. Matino, E. Alcamisi, V. Colla, S. Baragiola, P. Moni, Process modelling and simulation of electric arc furnace steelmaking to allow prognostic evaluations of process environmental and energy impacts, Materiaux & Techniques 104(1), art. no. 10 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  21. V. Colla, I. Matino, S. Dettori, S. Cateni, R. Matino, Reservoir computing approaches applied to energy management in industry, Commun. Comput. Inform. Sci. 1000, 66–79 (2019) [CrossRef] [Google Scholar]
  22. X. Chen, J. She, X. Chen, Wu M., Discrete wavelet transfer based BPNN for calculating carbon efficiency of sintering process, J. Adv. Comput. Intell. Intell. Inform. 20(7), 1070–1076 (2016) [CrossRef] [Google Scholar]
  23. M. Lieder, F.M.A. Asif, A. Rashid, A choice behavior experiment with circular business models using machine learning and simulation modeling, J. Clean. Prod. 258, article no. 120894 (2020) [CrossRef] [Google Scholar]
  24. V.J.L. Gan, I.M.C. Lo, J. Ma, K.T. Tse, J.C.P. Cheng, C. Chan M., Simulation optimisation towards energy efficient green buildings: Current status and future trends, J. Clean. Prod. 254, article no. 120012 (2020) [Google Scholar]
  25. J. Varghese J., Computational design of catalysts for bio-waste upgrading, Curr. Opin. Chem. Eng. 26, 20–27 (2019) [CrossRef] [Google Scholar]
  26. M. Vondra, M. Touš, S.Y. Teng, Digestate evaporation treatment in biogas plants: A techno-economic assessment by Monte Carlo, neural networks and decision trees, J. Clean. Prod. 238, article. no. 117870 (2019) [CrossRef] [Google Scholar]
  27. S. Cateni, V. Colla, G. Nastasi, A multivariate fuzzy system applied for outliers detection, J. Intell. Fuzzy Syst. 24(4), 889–903 (2013) [CrossRef] [Google Scholar]
  28. S. Cateni, V. Colla, M. Vannucci, A fuzzy logic-based method for outliers detection, in: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, AIA 2007, 2007, pp. 561–566 [Google Scholar]
  29. M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceedings of the MLSDA 2014, 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11 [Google Scholar]
  30. C. Zhou, R.C. Paffenroth, Anomaly detection with robust deep autoencoders, in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 665–674 [Google Scholar]
  31. I.-C. Wu, T.-L. Chen, Y.-M. Chen, T.-C. Liu, Y.-A. Chen, Analyzing load profiles of electricity consumption by a time series data mining framework, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10294 LNCS, 2017, pp. 443–454 [Google Scholar]
  32. X.-L. Li, D.-X. Liu, C. Jia, X.-Z. Chen, Multi-model control of blast furnace burden surface based on fuzzy SVM, Neurocomputing 148, 209–215 (2015) [CrossRef] [Google Scholar]
  33. S. Cateni, V. Colla, M. Vannucci, General purpose input variables extraction: A genetic algorithm based procedure GIVE a GAP, in: ISDA 2009, 9th International Conference on Intelligent Systems Design and Applications, 2009, pp. 1278–1283 [Google Scholar]
  34. V. Bolón-Canedo, B. Remeseiro, B. Cancela, Feature Selection for Big Visual Data: Overview and Challenges, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10882 LNCS, 2018, pp. 136–143 [Google Scholar]
  35. S.K. Phan, C. Chen, Big Data and Monitoring the Grid, The Power Grid: Smart, Secure, Green and Reliable, 2017, pp. 253–285 [Google Scholar]
  36. J. Pence, Y. Sun, X. Zhu, Z. Mohaghegh, C. Ostroff, E. Kee, Data-theoretic methodology and computational platform for the quantification of organizational mechanisms in probabilistic risk assessment, in: International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2017, Vol. 2, 2017, pp. 1294–1300 [Google Scholar]
  37. S. Cateni, V. Colla, M. Vannucci, A genetic algorithm-based approach for selecting input variables and setting relevant network parameters of a SOM-based classifier, Int. J. Simul.: Syst. Sci. Technol. 12(2), 30–37 (2011) [Google Scholar]
  38. S. Cateni, V. Colla, M. Vannucci, A hybrid feature selection method for classification purposes, in: Proceedings – UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014, 2014, pp. 39–44 [Google Scholar]
  39. I. Matino, S. Dettori, V. Colla, V. Weber, S. Salame, Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, article no. 113578 (2019) [CrossRef] [Google Scholar]
  40. I. Matino, V. Colla, T.A. Branca, L. Romaniello, Optimization of By-Products Reuse in the Steel Industry: Valorization of Secondary Resources with a Particular Attention on Their Pelletization, Waste Biomass Valoriz. 8(8), 2569–2581 (2017) [Google Scholar]
  41. Z. Yeo, J.S.C. Low, D.Z.L. Tan, S.Y. Chung, T.B. Tjandra, J. Ignatius, A collaboration platform for enabling industrial symbiosis: Towards creating a self-learning waste-to-resource database for recommending industrial symbiosis transactions using text analytics, Proc. CIRP 80, 643–648 (2019) [Google Scholar]
  42. G.F. Porzio, B. Fornai, A. Amato, et al., Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [CrossRef] [Google Scholar]
  43. E. Arica, M. Oliveira, C. Emmanouilidis, Performance measurement in sensorized sociotechnical manufacturing environments, in: IFIP Advances in Information and Communication Technology, Vol. 536, 2018, pp. 263–268 [Google Scholar]
  44. M. Oliveira, E. Arica, M. Pinzone, P. Fantini, M. Taisch, Human-Centered Manufacturing Challenges Affecting European Industry 4.0 Enabling Technologies, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11786 LNCS, 2019, pp. 507–517 [Google Scholar]
  45. E.G. Almquist, Implementation of MANIFEST augmented reality system at tata steel Europe, in: AISTech − Iron and Steel Technology Conference Proceedings, Vol. 3, 2020, pp. 1734–1744 [Google Scholar]
  46. M. Kerin, D.T. Pham, A review of emerging industry 4.0 technologies in remanufacturing, J. Clean. Prod. 237, (2019) [Google Scholar]
  47. I. Matino, V. Colla, L. Romaniello, F. Rosito, L. Portulano, Simulation techniques for an efficient use of resources: an overview for the steelmaking field, in: 2015 World Congress on Sustainable Technologies, WCST 2015, 2016, pp. 48–54 [Google Scholar]
  48. V. Colla, I. Matino, T.A. Branca, B. Fornai, L. Romaniello, F. Rosito, Efficient use of water resources in the steel industry, Water 9(11), article no. 874 (2017) [CrossRef] [Google Scholar]
  49. I. Matino, V. Colla, T.A. Branca, Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model, Front. Chem. Sci. Eng. 12(4), 718–730 (2018) [Google Scholar]
  50. I. Matino, V. Colla, S. Baragiola, Internal Slags Reuse in an Electric Steelmaking Route and Process Sustainability: Simulation of Different Scenarios Through the EIRES Monitoring Tool, Waste Biomass Valoriz. 9(12), 2481–2491 (2018) [Google Scholar]
  51. I. Matino, V. Colla, S. Baragiola, Electric energy consumption and environmental impact in unconventional EAF steelmaking scenarios, Energy Proc. 105, 3636–3641 (2017) [Google Scholar]
  52. D.C. Mazur, J.A. Kay, K.D. Mazur, B.K. Venne, The value of integrating power and process for the metals industry, Iron Steel Technol. 15(5), 56–62 (2018) [Google Scholar]
  53. G.F. Porzio, G. Nastasi, V. Colla, M. Vannucci, T.A. Branca, Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork, Appl. Energy 136, 1085–1097 (2014) [CrossRef] [Google Scholar]
  54. A. Maddaloni, G.F. Porzio, G. Nastasi, V. Colla, T.A. Branca, Multi-objective optimization applied to retrofit analysis: A case study for the iron and steel industry, Appl. Therm. Eng. 91, 638–646 (2015) [CrossRef] [Google Scholar]
  55. V. Colla, I. Matino, S. Dettori, et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Materiaux & Techniques 107(1), art. no. 104 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  56. A. Wolff, F. Mintus, S. Bialek, S. Dettori, V. Colla, “ Economical Mixed-Integer Model Predictive Controller for optimizing the sub-network of the BOF gas”, in: European Steel Days ESTAD 2019, June 24–28, 2019, Dusseldorf (Germany) [Google Scholar]
  57. E.F. Camacho, C. Bordons, Introduction to model predictive control, Adv. Textb. Control Signal Process. 1–11 (2007) [Google Scholar]
  58. S. Dettori, I. Matino, V. Colla, V. Weber, S. Salame, Neural network-based modeling methodologies for energy transformation equipment in integrated steelworks processes, Energy Proc. 158, 4061–4066 (2019) [CrossRef] [Google Scholar]
  59. V. Colla, I. Matino, S. Dettori, S. Cateni, R. Matino, Reservoir computing approaches applied to energy management in industry, Commun. Comput. Inform. Sci. 1000, 66–79 (2019) [CrossRef] [Google Scholar]
  60. I. Matino, S. Dettori, V. Colla, V. Weber, S. Salame, Two innovative modelling approaches in order to forecast consumption of blast furnace gas by hot blast stoves, Energy Proc. 158, 4043–4048 (2019) [Google Scholar]
  61. https://www.innovationpost.it/2019/04/01/lacciaieria-intelligente-che-diventa-un-impianto-faro/ [Google Scholar]
  62. G. Bavestrelli, Metal Scrap Classification and Tracking at Ori Martin, in: Proc. of the Workshop on Green Steel by the EAF route, November 13–14, 2019, Bergamo (Italy) [Google Scholar]
  63. A. Ballarino, C. Brondi, A. Brusaferri, G. Chizzoli, The CPS and LCA modelling: An integrated approach in the environmental sustainability perspective, IFIP Adv. Inform. Commun. Technol. 506, 543–552 (2017) [Google Scholar]
  64. “Circular Economy Action Plan: For a cleaner and more competitive Europe” within the framework of the “European Green Deal”, European Commission, 2020, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/actions-being-taken-eu_en (last access January 23, 2021) [Google Scholar]
  65. S. Popper, S. Bankes, R. Callaway, D. DeLaurentis, in: System-of-Systems Symposium: Report on a Summer Conversation, July 21–22, 2004, Potomac Institute for Policy Studies, Arlington, VA [Google Scholar]
  66. A. Moazed, Modern Monopolies, Macmillan, 2016, 30 p. [Google Scholar]
  67. https://www2.deloitte.com/us/en/insights/topics/strategy/as-a-service-business-model-flexible-consumption.html (last access January 27, 2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.