Issue
Matériaux & Techniques
Volume 108, Number 5-6, 2020
Materials and Society: transitions in society, materials and energy
Article Number 508
Number of page(s) 10
Section Mise en oeuvre des matériaux / Materials processing
DOI https://doi.org/10.1051/mattech/2021010
Published online 26 April 2021
  1. H. Kagermann, W. Wahlster, J. Held, Bericht der promotorengruppe kommunikation. Im fokus: Das zukunftsprojekt industrie 4.0, Handlungsempfehlungen zur umsetzung, Forschungsunion, 2012 [Google Scholar]
  2. R. Anderl, Industrie 4.0-Technological approaches, use cases, and implementation, At-Automatisierungstechnik 63(10), 753–765 (2015) [Google Scholar]
  3. G. Duft, P. Durana, Artificial intelligence-based decision-making algorithms, automated production systems, and big data-driven innovation in sustainable industry 4.0, Econ. Manag. Finan. Mark. 15(4), 9–18 (2020) [Google Scholar]
  4. I. Bisio, C. Garibotto, A. Grattarola, F. Lavagetto, A. Sciarrone, Exploiting context-aware capabilities over the internet of things for industry 4.0 applications, IEEE Netw. 32(3), 108–114 (2018) [Google Scholar]
  5. H.-C. Möhring, P. Wiederkehr, K. Erkorkmaz, Y. Kakinuma, Self-optimizing machining systems, CIRP Ann. 69(2), 740–763 (2020) [Google Scholar]
  6. S.I. Tay, T.C. Lee, N.Z.A. Hamid, A.N.A. Ahmad, An overview of industry 4.0: Definition, components, and government initiatives, J. Adv. Res. Dynam. Control Syst. 10(14), 1379–1387 (2018) [Google Scholar]
  7. P. Osterrieder, L. Budde, T. Friedli, The smart factory as a key construct of industry 4.0: A systematic literature review, Int. J. Prod. Econ. 221, 107476 (2020) [Google Scholar]
  8. L. Gehrke, A.T. Kühn, D. Rule, et al., A Discussion of Qualifications and Skills in the Factory of the Future: A German and American Perspective, VDI The Association of German Engineers, Düsseldorf, Germany, 2015 [Google Scholar]
  9. V. Iannino, V. Colla, J. Denker, M. Göttsche, A CPS-based simulation platform for long production factories, Metals 9(10), 1025 (2019) [Google Scholar]
  10. J. Brandenburger, V. Colla, G. Nastasi, F. Ferro, C. Schirm, J. Melcher, Big Data Solution for Quality Monitoring and Improvement on Flat Steel Production, IFAC-PapersOnLine 49(20), 55–60 (2016) [Google Scholar]
  11. M. Vannocci, A. Ritacco, A. Castellano, et al., Flatness De-fect Detection and Classification in Hot Rolled Steel Strips Using Convolutional NeuralNetworks, in: Rojas I, Joya G, Catala A, eds., Advances in Computational Intelligence, IWANN 2019, Lecture Notes in Computer Science, Springer, Cham, 2019, 11507 p. [Google Scholar]
  12. V. Iannino, M. Vannocci, M. Vannucci, V. Colla, M. Neuer, A multi-agent approach for the self-optimization of steel production, Int. J. Simul.: Syst. Sci. Technol. 19(5), 20.1–20.7 (2018) [Google Scholar]
  13. J.A. Schumpeter, Kapitalismus, Sozialismus und Demokratie. 7, Auflage. Tübingen., 1993 [Google Scholar]
  14. C.B. Frey, M.A. Osborne, The future of employment: How susceptible are jobs to computerisation?, Technol. Forecast. Soc. Change 114, 254–280 (2017) [Google Scholar]
  15. R.D. Atkinson, J.J. Wu, False alarmism: Technological disruption and the US labor market, Inform. Technol. Innov. Found. ITIF, 1850–2015 (2017) [Google Scholar]
  16. J. Abel, H. Hirsch-Kreinsen, T. Wienzek, Akzeptanz von Industrie 4.0, Abschlussbericht zu einer explorativen empirischen Studie über die deutsche Industrie. München: acatech, 2019 [Google Scholar]
  17. Acatech-Deutsche Akademie der Technikwissenschaften, “ Kompetenzentwicklungsstudie Industrie 4.0 – Erste Ergebnisse und Schlussfolgerungen”, 2016 [Google Scholar]
  18. P. Kilimis, W. Zou, M. Lehmann, U. Berger, A Survey on Digitalization for SMEs in Brandenburg, Germany, IFAC-PapersOnLine 52(13), 2140–2145 (2019) [Google Scholar]
  19. J. Ordieres-Meré, T. Prieto Remón, J. Rubio, Digitalization: An Opportunity for Contributing to Sustainability From Knowledge Creation, Sustainability 12, 1460 (2020) [Google Scholar]
  20. DESI 2018, Digital Economy and Society Index Methodological Note, EU Comm., Bruxelles, 2018 [Google Scholar]
  21. C. Santos, A. Mehrsai, A.C. Barros, M. Araújo, E. Ares, Towards Industry 4.0: an overview of European strategic roadmaps, Proc. Manuf. 13, 972–979 (2017) [Google Scholar]
  22. A. Merluzzi, G. Brunetti, Metals industry: Road to digitalization, in: Proc. of 40th International Con-vention on Information and Communication Technology, Electron. Microelectron. (MI-PRO) 2017, 2017, pp. 967–973 [Google Scholar]
  23. J. Bughin, E. Hazan, S. Lund, P. Dahlström, A. Wiesinger, A. Subramaniam, Skill Shift: Auto-mation and the Future of Workforce, McKinsey Global Institute, 2018 [Google Scholar]
  24. European Commission, The future of European steel. Innovation and sustainability in a competitive world and EU circular economy, Publications Office of the European Union, Luxembourg, 2017 [Google Scholar]
  25. European Commission, Steel: Preserving sustainable jobs and growth in Europe, COM (2016) 155 final, European Commission, Brussels, 2016 [Google Scholar]
  26. European Commission − Directorate-General for Enterprises and Industry, Study on the Competitiveness of the European Steel Sector − Final report, Ecorys SCS Group, Rotterdam, 2008 [Google Scholar]
  27. EUROFER, European steel – A manifesto: 2019–2024, 2019, Available from http://www.eurofer.org/News%26Events/News/MANIFESTO%20European%20Steel%202019.fhtml [Google Scholar]
  28. K. Peters, E. Malfa, V. Colla, The European steel technology platform’s strategic research agenda: A further step for the steel as backbone of EU resource and energy intense industry sustainability, Metall. Ital. 111(5), 5–17 (2019) [Google Scholar]
  29. A.B.L. De Sousa Jabbour, C.J.C. Jabbour, C. Foropon, M.G. Filho, When titans meet: Can in-dustry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors, Technol. Forecast. Soc. Chang. 132, 18–25 (2018) [Google Scholar]
  30. V. Colla, I. Matino, F. Cirilli, et al., Improving ener-gy and resource efficiency of electric steelmaking through simulation tools and process data analyses, Matériaux & Techniques 104(6-7), 602 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  31. Material Economics, The Circular Economy A Powerful Force For Climate Mitigation, 2018, Available from https://materialeconomics.com/publications/the-circulareconomy [Google Scholar]
  32. A. Larsson, L. Lindfred, Digitalization, circular economy and the future of labor: How circular economy and digital transformation can affect labor, in: The Digital Transformation of Labor: Automation, The Gig Economy and Welfare, 1st ed., Routledge, 2020, 16 p., DOI: 10.4324/9780429317866-16 [Google Scholar]
  33. M. Arens, Policy support for and R&D activities on digitising the European steel industry, Resour. Conserv. Recycl. 143, 244–250 (2019) [Google Scholar]
  34. C. Neef, S. Hirzel, M. Arens, Industry 4.0 in the European Iron and Steel Industry: Towards an Overview of Implementations and Perspectives, Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany, 2018 [Google Scholar]
  35. F. Marchiori, M. Benini, S. Cateni, et al., Agent-based approach for energy demand-side management, Stahl und Eisen 138, 25–29 (2018) [Google Scholar]
  36. S. Dettori, I. Matino, V. Colla, V. Weber, S. Salame, Neural Network-based modeling methodol-ogies for energy transformation equipment in integrated steelworks processes, Energy Proc. 158, 4061–4066 (2019) [Google Scholar]
  37. G.F. Porzio, B. Fornai, A. Amato, et al., Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [Google Scholar]
  38. A. Maddaloni, G.F. Porzio, G. Nastasi, V. Colla, T.A. Branca, Multi-objective optimization ap-plied to retrofit analysis: A case study for the iron and steel industry, Appl. Therm. Eng. 91, 638–646 (2015) [Google Scholar]
  39. I. Matino, E. Alcamisi, V. Colla, S. Baragiola, P. Moni, Process modelling and simulation of electric arc furnace steelmaking to allow prognostic evaluations of process environmental and energy impacts, Matériaux & Techniques 104, (2016) [Google Scholar]
  40. I. Matino, V. Colla, F. Cirilli, et al., Environmental impact evaluation for effective resource manage-ment in EAF steelmaking, La Metallurgia Italiana 109, 48–58 (2017) [Google Scholar]
  41. I. Matino, T.A. Branca, B. Fornai, V. Colla, L. Romaniello, Scenario analyses for by-products reuse in integrated steelmaking plants by combining process modeling, simulation, and optimi-zation techniques, Steel Res. Int. 90, (2019) [Google Scholar]
  42. H. Zsifkovits, J. Kapeller, H. Reiter, C. Weichbold, M. Woschank, Consistent Identification and Traceability of Objects as an Enabler for Automation in the Steel Processing Industry, in: Matt D, Modrák V, Zsifkovits H, eds., Industry 4.0 for SMEs, Palgrave Macmillan, Cham, 2020 [Google Scholar]
  43. L.-W. Kang, Y.-T. Chen, W.-C. Jhong, C.-Y. Hsu, Deep learning-based identification of steel products, Smart Innovation, Syst. Technol. 110, 315–323 (2019) [Google Scholar]
  44. C.-Y. Hsu, L.-W. Kang, H.-Y. Lin, R.-H. Fu, C.-Y. Lin, M.-F. Weng, D.-Y. Chen, Depth-based feature extraction-guided automatic identification tracking of steel products for smart manufacturing in steel 4.0, in: Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018, 2018, pp. 145–146 [Google Scholar]
  45. T.A. Branca, B. Fornai, V. Colla, M.M. Murri, E. Streppa, A.J. Schröder, The Challenge of Digitalization in the Steel Sector, Metals 10, 288 (2020) [Google Scholar]
  46. D. Autor, A. Salomons, Is automation labor-displacing? Productivity growth, employment, and the labor share, National Bureau of Economic Research, 2018 [Google Scholar]
  47. W. Bauer, C. Vocke, Work in the Age of Artificial Intelligence − Challenges and Potentials for the Design of New Forms of Human-Machine Interaction, in: Kantola J, Nazir S, eds., Advances in Human Factors, Business Management and Leadership, AHFE 2019, Adv. Intell. Syst. Comput., Vol. 961, Springer, Cham, 2020, DOI: 10.1007/978-3-030-20154-8_45 [Google Scholar]
  48. V. Colla, A.J. Schroeder, A. Buzzelli, D. Abbà, A. Faes, L. Romaniello, Introduction of symbiotic human-robot-cooperation in the steel sector: an example of social innovation, Matériaux & Techniques 105, 505 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  49. V. Colla, R. Matino, A. Faes, L. Romaniello, A.J. Schröder, Robot-assisted replacement of the refractory components of the ladle sliding gate in a steel shop, in: Proceedings of the 10th European Metallurgical Conference, EMC 2019, Vol. 4, 2019, pp. 1441–1454 [Google Scholar]
  50. European Commission, Blueprint for Sectoral Cooperation on Skills: Towards an EU Strategy Addressing the Skills Needs of the Steel Sector: European Vision on Steel-Related Skills of Today and Tomorrow Study, European Commission, Bruxelles, Belgium, 2019, Available from <https://op.europa.eu/en/publication-detail/-/publication/ff0f8660-ca07-11e9-992f-01aa75ed71a1> [Google Scholar]
  51. T.W. Malone, The Future of Work. How the New Order of Business Will Shape Your Organization, Your Management Styles, and Your Life, Harvard Business School Press, Cambridge, MA, 2004 [Google Scholar]
  52. L.A. Berger, D.R. Berger, The Talent Management Handbook: Creating Organisational Excellence By Identifying, Developing & Promoting Your Best People, McGraw-Hill, New York, 2004 [Google Scholar]
  53. F. Xia, L.T. Yang, L. Wang, A. Vinel, Internet of things, Int. J. Commun. Syst. 25(9), 1101–1102 (2012) [Google Scholar]
  54. F. Zhang, M. Liu, Z. Zhou, W. Shen, An IoT-based online monitoring system for continuous steel casting, IEEE Intern. Things J. 3(6), 1355–1363 (2016) [Google Scholar]
  55. K. Schwab, The Fourth Industrial Revolution, Currency, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.