Numéro
Matériaux & Techniques
Volume 108, Numéro 5-6, 2020
Materials and Society: transitions in society, materials and energy
Numéro d'article 508
Nombre de pages 10
Section Mise en oeuvre des matériaux / Materials processing
DOI https://doi.org/10.1051/mattech/2021010
Publié en ligne 26 avril 2021
  1. H. Kagermann, W. Wahlster, J. Held, Bericht der promotorengruppe kommunikation. Im fokus: Das zukunftsprojekt industrie 4.0, Handlungsempfehlungen zur umsetzung, Forschungsunion, 2012 [Google Scholar]
  2. R. Anderl, Industrie 4.0-Technological approaches, use cases, and implementation, At-Automatisierungstechnik 63(10), 753–765 (2015) [Google Scholar]
  3. G. Duft, P. Durana, Artificial intelligence-based decision-making algorithms, automated production systems, and big data-driven innovation in sustainable industry 4.0, Econ. Manag. Finan. Mark. 15(4), 9–18 (2020) [Google Scholar]
  4. I. Bisio, C. Garibotto, A. Grattarola, F. Lavagetto, A. Sciarrone, Exploiting context-aware capabilities over the internet of things for industry 4.0 applications, IEEE Netw. 32(3), 108–114 (2018) [Google Scholar]
  5. H.-C. Möhring, P. Wiederkehr, K. Erkorkmaz, Y. Kakinuma, Self-optimizing machining systems, CIRP Ann. 69(2), 740–763 (2020) [Google Scholar]
  6. S.I. Tay, T.C. Lee, N.Z.A. Hamid, A.N.A. Ahmad, An overview of industry 4.0: Definition, components, and government initiatives, J. Adv. Res. Dynam. Control Syst. 10(14), 1379–1387 (2018) [Google Scholar]
  7. P. Osterrieder, L. Budde, T. Friedli, The smart factory as a key construct of industry 4.0: A systematic literature review, Int. J. Prod. Econ. 221, 107476 (2020) [Google Scholar]
  8. L. Gehrke, A.T. Kühn, D. Rule, et al., A Discussion of Qualifications and Skills in the Factory of the Future: A German and American Perspective, VDI The Association of German Engineers, Düsseldorf, Germany, 2015 [Google Scholar]
  9. V. Iannino, V. Colla, J. Denker, M. Göttsche, A CPS-based simulation platform for long production factories, Metals 9(10), 1025 (2019) [Google Scholar]
  10. J. Brandenburger, V. Colla, G. Nastasi, F. Ferro, C. Schirm, J. Melcher, Big Data Solution for Quality Monitoring and Improvement on Flat Steel Production, IFAC-PapersOnLine 49(20), 55–60 (2016) [CrossRef] [Google Scholar]
  11. M. Vannocci, A. Ritacco, A. Castellano, et al., Flatness De-fect Detection and Classification in Hot Rolled Steel Strips Using Convolutional NeuralNetworks, in: Rojas I, Joya G, Catala A, eds., Advances in Computational Intelligence, IWANN 2019, Lecture Notes in Computer Science, Springer, Cham, 2019, 11507 p. [Google Scholar]
  12. V. Iannino, M. Vannocci, M. Vannucci, V. Colla, M. Neuer, A multi-agent approach for the self-optimization of steel production, Int. J. Simul.: Syst. Sci. Technol. 19(5), 20.1–20.7 (2018) [Google Scholar]
  13. J.A. Schumpeter, Kapitalismus, Sozialismus und Demokratie. 7, Auflage. Tübingen., 1993 [Google Scholar]
  14. C.B. Frey, M.A. Osborne, The future of employment: How susceptible are jobs to computerisation?, Technol. Forecast. Soc. Change 114, 254–280 (2017) [Google Scholar]
  15. R.D. Atkinson, J.J. Wu, False alarmism: Technological disruption and the US labor market, Inform. Technol. Innov. Found. ITIF, 1850–2015 (2017) [Google Scholar]
  16. J. Abel, H. Hirsch-Kreinsen, T. Wienzek, Akzeptanz von Industrie 4.0, Abschlussbericht zu einer explorativen empirischen Studie über die deutsche Industrie. München: acatech, 2019 [Google Scholar]
  17. Acatech-Deutsche Akademie der Technikwissenschaften, “ Kompetenzentwicklungsstudie Industrie 4.0 – Erste Ergebnisse und Schlussfolgerungen”, 2016 [Google Scholar]
  18. P. Kilimis, W. Zou, M. Lehmann, U. Berger, A Survey on Digitalization for SMEs in Brandenburg, Germany, IFAC-PapersOnLine 52(13), 2140–2145 (2019) [Google Scholar]
  19. J. Ordieres-Meré, T. Prieto Remón, J. Rubio, Digitalization: An Opportunity for Contributing to Sustainability From Knowledge Creation, Sustainability 12, 1460 (2020) [Google Scholar]
  20. DESI 2018, Digital Economy and Society Index Methodological Note, EU Comm., Bruxelles, 2018 [Google Scholar]
  21. C. Santos, A. Mehrsai, A.C. Barros, M. Araújo, E. Ares, Towards Industry 4.0: an overview of European strategic roadmaps, Proc. Manuf. 13, 972–979 (2017) [Google Scholar]
  22. A. Merluzzi, G. Brunetti, Metals industry: Road to digitalization, in: Proc. of 40th International Con-vention on Information and Communication Technology, Electron. Microelectron. (MI-PRO) 2017, 2017, pp. 967–973 [Google Scholar]
  23. J. Bughin, E. Hazan, S. Lund, P. Dahlström, A. Wiesinger, A. Subramaniam, Skill Shift: Auto-mation and the Future of Workforce, McKinsey Global Institute, 2018 [Google Scholar]
  24. European Commission, The future of European steel. Innovation and sustainability in a competitive world and EU circular economy, Publications Office of the European Union, Luxembourg, 2017 [Google Scholar]
  25. European Commission, Steel: Preserving sustainable jobs and growth in Europe, COM (2016) 155 final, European Commission, Brussels, 2016 [Google Scholar]
  26. European Commission − Directorate-General for Enterprises and Industry, Study on the Competitiveness of the European Steel Sector − Final report, Ecorys SCS Group, Rotterdam, 2008 [Google Scholar]
  27. EUROFER, European steel – A manifesto: 2019–2024, 2019, Available from http://www.eurofer.org/News%26Events/News/MANIFESTO%20European%20Steel%202019.fhtml [Google Scholar]
  28. K. Peters, E. Malfa, V. Colla, The European steel technology platform’s strategic research agenda: A further step for the steel as backbone of EU resource and energy intense industry sustainability, Metall. Ital. 111(5), 5–17 (2019) [Google Scholar]
  29. A.B.L. De Sousa Jabbour, C.J.C. Jabbour, C. Foropon, M.G. Filho, When titans meet: Can in-dustry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors, Technol. Forecast. Soc. Chang. 132, 18–25 (2018) [CrossRef] [Google Scholar]
  30. V. Colla, I. Matino, F. Cirilli, et al., Improving ener-gy and resource efficiency of electric steelmaking through simulation tools and process data analyses, Matériaux & Techniques 104(6-7), 602 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  31. Material Economics, The Circular Economy A Powerful Force For Climate Mitigation, 2018, Available from https://materialeconomics.com/publications/the-circulareconomy [Google Scholar]
  32. A. Larsson, L. Lindfred, Digitalization, circular economy and the future of labor: How circular economy and digital transformation can affect labor, in: The Digital Transformation of Labor: Automation, The Gig Economy and Welfare, 1st ed., Routledge, 2020, 16 p., DOI: 10.4324/9780429317866-16 [Google Scholar]
  33. M. Arens, Policy support for and R&D activities on digitising the European steel industry, Resour. Conserv. Recycl. 143, 244–250 (2019) [CrossRef] [Google Scholar]
  34. C. Neef, S. Hirzel, M. Arens, Industry 4.0 in the European Iron and Steel Industry: Towards an Overview of Implementations and Perspectives, Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe, Germany, 2018 [Google Scholar]
  35. F. Marchiori, M. Benini, S. Cateni, et al., Agent-based approach for energy demand-side management, Stahl und Eisen 138, 25–29 (2018) [Google Scholar]
  36. S. Dettori, I. Matino, V. Colla, V. Weber, S. Salame, Neural Network-based modeling methodol-ogies for energy transformation equipment in integrated steelworks processes, Energy Proc. 158, 4061–4066 (2019) [CrossRef] [Google Scholar]
  37. G.F. Porzio, B. Fornai, A. Amato, et al., Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry, Appl. Energy 112, 818–833 (2013) [CrossRef] [Google Scholar]
  38. A. Maddaloni, G.F. Porzio, G. Nastasi, V. Colla, T.A. Branca, Multi-objective optimization ap-plied to retrofit analysis: A case study for the iron and steel industry, Appl. Therm. Eng. 91, 638–646 (2015) [CrossRef] [Google Scholar]
  39. I. Matino, E. Alcamisi, V. Colla, S. Baragiola, P. Moni, Process modelling and simulation of electric arc furnace steelmaking to allow prognostic evaluations of process environmental and energy impacts, Matériaux & Techniques 104, (2016) [Google Scholar]
  40. I. Matino, V. Colla, F. Cirilli, et al., Environmental impact evaluation for effective resource manage-ment in EAF steelmaking, La Metallurgia Italiana 109, 48–58 (2017) [Google Scholar]
  41. I. Matino, T.A. Branca, B. Fornai, V. Colla, L. Romaniello, Scenario analyses for by-products reuse in integrated steelmaking plants by combining process modeling, simulation, and optimi-zation techniques, Steel Res. Int. 90, (2019) [Google Scholar]
  42. H. Zsifkovits, J. Kapeller, H. Reiter, C. Weichbold, M. Woschank, Consistent Identification and Traceability of Objects as an Enabler for Automation in the Steel Processing Industry, in: Matt D, Modrák V, Zsifkovits H, eds., Industry 4.0 for SMEs, Palgrave Macmillan, Cham, 2020 [Google Scholar]
  43. L.-W. Kang, Y.-T. Chen, W.-C. Jhong, C.-Y. Hsu, Deep learning-based identification of steel products, Smart Innovation, Syst. Technol. 110, 315–323 (2019) [Google Scholar]
  44. C.-Y. Hsu, L.-W. Kang, H.-Y. Lin, R.-H. Fu, C.-Y. Lin, M.-F. Weng, D.-Y. Chen, Depth-based feature extraction-guided automatic identification tracking of steel products for smart manufacturing in steel 4.0, in: Proceedings of 4th IEEE International Conference on Applied System Innovation 2018, ICASI 2018, 2018, pp. 145–146 [Google Scholar]
  45. T.A. Branca, B. Fornai, V. Colla, M.M. Murri, E. Streppa, A.J. Schröder, The Challenge of Digitalization in the Steel Sector, Metals 10, 288 (2020) [CrossRef] [Google Scholar]
  46. D. Autor, A. Salomons, Is automation labor-displacing? Productivity growth, employment, and the labor share, National Bureau of Economic Research, 2018 [CrossRef] [Google Scholar]
  47. W. Bauer, C. Vocke, Work in the Age of Artificial Intelligence − Challenges and Potentials for the Design of New Forms of Human-Machine Interaction, in: Kantola J, Nazir S, eds., Advances in Human Factors, Business Management and Leadership, AHFE 2019, Adv. Intell. Syst. Comput., Vol. 961, Springer, Cham, 2020, DOI: 10.1007/978-3-030-20154-8_45 [Google Scholar]
  48. V. Colla, A.J. Schroeder, A. Buzzelli, D. Abbà, A. Faes, L. Romaniello, Introduction of symbiotic human-robot-cooperation in the steel sector: an example of social innovation, Matériaux & Techniques 105, 505 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  49. V. Colla, R. Matino, A. Faes, L. Romaniello, A.J. Schröder, Robot-assisted replacement of the refractory components of the ladle sliding gate in a steel shop, in: Proceedings of the 10th European Metallurgical Conference, EMC 2019, Vol. 4, 2019, pp. 1441–1454 [Google Scholar]
  50. European Commission, Blueprint for Sectoral Cooperation on Skills: Towards an EU Strategy Addressing the Skills Needs of the Steel Sector: European Vision on Steel-Related Skills of Today and Tomorrow Study, European Commission, Bruxelles, Belgium, 2019, Available from <https://op.europa.eu/en/publication-detail/-/publication/ff0f8660-ca07-11e9-992f-01aa75ed71a1> [Google Scholar]
  51. T.W. Malone, The Future of Work. How the New Order of Business Will Shape Your Organization, Your Management Styles, and Your Life, Harvard Business School Press, Cambridge, MA, 2004 [Google Scholar]
  52. L.A. Berger, D.R. Berger, The Talent Management Handbook: Creating Organisational Excellence By Identifying, Developing & Promoting Your Best People, McGraw-Hill, New York, 2004 [Google Scholar]
  53. F. Xia, L.T. Yang, L. Wang, A. Vinel, Internet of things, Int. J. Commun. Syst. 25(9), 1101–1102 (2012) [CrossRef] [Google Scholar]
  54. F. Zhang, M. Liu, Z. Zhou, W. Shen, An IoT-based online monitoring system for continuous steel casting, IEEE Intern. Things J. 3(6), 1355–1363 (2016) [CrossRef] [Google Scholar]
  55. K. Schwab, The Fourth Industrial Revolution, Currency, 2017 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.