Issue
Matériaux & Techniques
Volume 108, Number 5-6, 2020
Materials and Society: transitions in society, materials and energy
Article Number 506
Number of page(s) 22
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2021008
Published online 26 April 2021
  1. O.-A. Lorentsen, Aluminium, in: M. Tangstad, ed., Metal Production in Norway, Akademika Publishing, Trondheim, 2013, ISBN 978-82-321-0241-9, pp. 25–55 [Google Scholar]
  2. M. Sørlie, H. Øye, Cathodes in Aluminium Electrolysis, 3rd ed., Aluminium Verlag, Dusseldorf, Germany 2010, ISBN 987-3-87017-294-7 [Google Scholar]
  3. T. Krupp, https://www.thyssenkrupp-materials.co.uk/advantages-of-aluminium.html (Accessed 2020/03/18) [Google Scholar]
  4. W.J. Rankin, Minerals, Metals and Sustainability – Meeting Future Material Needs, CRC Press, Taylor & Francis Group, Leiden, Netherlands, 2011, ISBN 978-0-415-68459-0 [Google Scholar]
  5. H.J.T. Ellingham, Reducibility of Oxides and Sulphides in Metallurgical Processes, J. Soc. Chem. Ind. 63, 125–160 (1944), DOI: 10.1002/jctb.5000630501 [Google Scholar]
  6. World Aluminium, The website of the International Aluminium Institute: Primary Aluminium Smelting Power Consumption, 2020, http://www.world-aluminium.org/statistics/primary-aluminium-smelting-power-consumption/#data (Accessed 2020/04/01) [Google Scholar]
  7. H. Kvande, W. Haupin, Cell voltage in aluminum electrolysis: A practical approach, JOM 52, 31–37 (2000), DOI: 10.1007/s11837-000-0044-x [Google Scholar]
  8. R. Huglen, H. Kvande, Global Considerations of Aluminium Electrolysis on Energy and the Environment Light Metals 1994, Editor Ulrich Mannweiler, Republished in G. Bearne et al. (Eds.), Essential Readings in Light Metals, © The Minerals, Metals & Materials Society, 2016, pp. 948–955 [Google Scholar]
  9. P. Mukhopadhyay, Review Article Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys, Int. Scholar. Res. Netw. (2012), Article ID 165082, 15 p., https://doi.org/10.5402/2012/165082 [Google Scholar]
  10. T. Furu, N. Telioui, C. Behrens, J. Hasenclever, P. Schaffer, Trace Elements in Aluminium Alloys: Their Origin and Impact on Processability and Product Properties, in: Proceedings of the 12th International Conference on Aluminium Alloys, September 5–9, 2010, The Japan Institute of Light Metals, Yokohama, Japan, © 2010, pp. 282–289 [Google Scholar]
  11. R. Modaresi, A.N. Løvik, D.B. Müller Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles, JOM 66, 2262–2271 (2014), DOI: 10.1007/s11837-014-0900-8 [Google Scholar]
  12. World Aluminium, The website of the International Aluminium Institute: Global Aluminium Cycle, 2020, http://www.world-aluminium.org/statistics/massflow/ (Accessed 2020/04/01) [Google Scholar]
  13. M. Bertram, S. Ramkumar, H. Rechberger, et al., A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products, Resour. Conserv. Recycl. 125, 48–69 (2017) [Google Scholar]
  14. J. Cullen, J.M. Allwood, Mapping the global flow of aluminium: From liquid aluminium to end-use goods, Environ. Sci. Technol. 47(7), 3057–3064 (2013), DOI: 10.1021/es304256s [Google Scholar]
  15. G. Liu, C.E. Bangs, D.B. Müller, Stock dynamics and emission pathways of the global aluminium cycle, Nat. Clim. Change 3, 338–342 (2013), DOI: 10.1038/NCLIMATE1698; www.nature.com/natureclimatechange [Google Scholar]
  16. A.N. Løvik, R. Modaresi, D.B. Müller, Long-Term Strategies for Increased Recycling of Automotive Aluminum and Its Alloying Elements, Environ. Sci. Technol. 48(8), 4257–4265 (2014), DOI: 10.1021/es405604g [Google Scholar]
  17. H. Hatayamaa, I. Daigo, Y. Matsuno, Y. Adachi, Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology, Resour. Conserv. Recycl. 66, 8–14 (2012), https://doi.org/10.1016/j.resconrec.2012.06.006 [Google Scholar]
  18. R. Modaresi, Dynamics of aluminum use in the global passenger car system – Challenges and solutions of recycling and material substitution, PhD Thesis, NTNU Trondheim, Industrial Ecology (IndEcol) Programme, May 2015, 100 p., ISBN 978-82-326-0889-8 (electronic ver.), DOI: 10.13140/RG.2.2.16327.75681; https://www.researchgate.net/publication/331198118 [Google Scholar]
  19. Material Economics, Ett Värdebeständigt Svenskt Materialsystem [In Swedish], Retaining value in the Swedish materials system – Summary [In English], 2018, https://materialeconomics.com/new-publications/ett-vardebestandigt-svenskt-materialsystem [Google Scholar]
  20. G. Djukanovic, Aluminium Alloys in the Automotive Industry: A Handy Guide, 2019, https://aluminiuminsider.com/author/goran-djukanovic/ Accessed 2020-04-02 [Google Scholar]
  21. CM BUSINESS CONSULTING, Assessment of Aluminium Usage in China’s Automobile Industry 2016∼2030, (Executive summary + Report [pptx] + Database[xlsx]), Confidential report prepared by CM group for International Aluminium Institute, 2019 (Files accessed on 2020/04/15), Available from http://www.world-aluminium.org/publications/#822 [Google Scholar]
  22. S. Eggen, K. Sandaunet, L. Kolbeinsen, A. Kvithyld, Recycling of Aluminium from Mixed Household Waste, A. Tomsett (ed.), in: Light Metals, 2020, pp. 1091–1100, The Minerals, Metals & Materials Series, DOI: 10.1007/978-3-030-36408-3_148 [Google Scholar]
  23. M. Gökelma, F. Diaz, I. Elif Öner, B. Friedrich, G. Tranell, An Assessment of Recyclability of Used Aluminium Coffee Capsules, A. Tomsett (ed.), in: Light Metals, 2020, pp. 1101–1108, The Minerals, Metals & Materials Series, DOI: 10.1007/978-3-030-36408-3_149 [Google Scholar]
  24. S. Verschraegen, S. Eggen, Recycling of aluminium containing multilayer packaging, Unpublished internal report – Summer internship SFI Metal Production, NTNU/Sintef, Trondheim, 2019 [Google Scholar]
  25. Hydro, Hydro and partners establish research project on recyclable food packaging, 2020, https://www.hydro.com/en-NO/media/news/2019/hydro-and-partners-establish-research-project-on-recyclable-food-packaging/ (Accessed: 2020-05-06) [Google Scholar]
  26. F. Habashi, Karl Josef Bayer and his time – Part 1, CIM Bull. 97, 61–64 (2004) [Google Scholar]
  27. G.J.J. Aleva, Laterites. Concepts, Geology, Morphologyand Chemistry, ISRIC, Wageningen, 1994, 169 p. ISBN: 90.6672.053.0., Clay Miner. 31, 440–441 (1996), DOI: 10.1180/claymin.1996.031.3.15 [Google Scholar]
  28. G. Bárdossy, G.J.J. Aleva, Lateritic bauxites, Develop. Econ. Geol. 27, Elsevier Science Ltd., 1990 [Google Scholar]
  29. G. Bardossy, Karst bauxites. Bauxite deposits on carbonate rock, Elsevier Scientific Publishing Company, Amsterdam, 1982 [Google Scholar]
  30. F.M. Meyer, Availability of Bauxite Reserves, Nat. Resour. Res. 13, 161–172 (2004), DOI: 10.1023/B:NARR.0000046918.50121.2e [Google Scholar]
  31. P. Smith, The Processing of High Silica Bauxites – Review of Existing and Potential Processes, Hydrometallurgy 98(1-2), 162–176 (2009), DOI: 10.1016/j.hydromet.2009.04.015 [Google Scholar]
  32. B.K. Gan, Z. Taylor, B. Xu, et al., Quantitative phase analysis of bauxites and their dissolution products, Int. J. Miner. Process. 123, 64–72 (2013), DOI: 10.1016/j.minpro.2013.05.005 [Google Scholar]
  33. Materials Science, in: P. Ptacek, ed., Strontium Aluminate – Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications, ISBN 978-953-51-1591-5, Published on July 2, 2014 under CC BY 3.0 license [Google Scholar]
  34. J. Safarian L. Kolbeinsen, Sustainability in Alumina Production from Bauxite, in: Sustainable Industrial Processing Summit (2016), pp. 75–82 [Google Scholar]
  35. H. Sellaeg, L. Kolbeinsen, J. Safarian, Iron Separation from Bauxite Through Smelting-Reduction Process, Miner. Met. Mater. Ser. 127–135 (2017), DOI: 10.1007/978-3-319-51541-0_19 [Google Scholar]
  36. F.I. Azof, L. Kolbeinsen, J. Safarian, The Leachability of Calcium Aluminate Phases in Slags for the Extraction of Alumina, Trav. 46, in: Proc. 35th Int. ICSOBA Conf., Hamburg, 2017, pp. 243–253 [Google Scholar]
  37. H. Pedersen, Process of Manufacturing Aluminum Hydroxide, US Patent 1,618,105 (1927) [Google Scholar]
  38. G.B. Kauffman, The Le Châtelier process for the extraction of alumina, J. Chem. Educ. 68(3), 270 (1991) (Letter), DOI: 10.1021/ed068p270.1; https://pubs.acs.org/action/doSearch?AllField=The+Le+Chatelier+Process+for+the+Extraction+of+Alumina&SeriesKey=jceda8 [Google Scholar]
  39. ENSUREAL, Ensuring zero waste production of Alumina in Europe, https://www.ensureal.com/ [Google Scholar]
  40. F.I. Azof, Pyrometallurgical and Hydrometallurgical Treatment of Calcium Aluminate-containing Slags for Alumina Recovery, PhD Thesis, Norwegian University of Science and Technology (NTNU), Faculty of Natural Sciences (NV), Department of Materials Science and Engineering (IMA), Trondheim, 2020 [Google Scholar]
  41. F.I. Azof, Y. Yang, D. Panias, L. Kolbeinsen, J. Safarian, Leaching characteristics and mechanism of the synthetic calcium-aluminate slags for alumina recovery, Hydrometallurgy 185, 273–290 (2019), DOI: 10.1016/j.hydromet.2019.03.006 [Google Scholar]
  42. F.I. Azof, L. Kolbeinsen, J. Safarian, Characteristics of calcium-aluminate slags and pig Iron produced from smelting-reduction of low-grade bauxites, Metall. Mater. Trans. 49, 2400–2420 (2018), DOI: 10.1007/s11663-018-1353-1 [Google Scholar]
  43. F.I. Azof, M. Vafeias, D. Panias, J. Safarian, The leachability of a ternary CaOAl2O3-SiO2 slag produced from smelting-reduction of low-grade bauxite for alumina recovery, Hydrometallurgy 191, 105184 (2020) DOI: 10.1016/j.hydromet.2019.105184 [Google Scholar]
  44. E. Nedkvitne, Leaching and Precipitation Experiments Related to the Pedersen Process, MSc. Thesis, NTNU, 2019 [Google Scholar]
  45. A. Lazou, C. van der Eijk, E. Balomenos, L. Kolbeinsen, J. Safarian, On the Direct Reduction Phenomena of Bauxite Ore Using H2 Gas in a Fixed Bed Reactor, J. Sustain. Metall. 6, 227–238 (2020), Published online: 28 March 2020. DOI: 10.1007/s40831-020-00268-5 [Google Scholar]
  46. S. Seim, Experimental investigations and phase relations in the liquid FeTiO3-Ti2O3-TiO2 slag system, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011 [Google Scholar]
  47. S.C. Lobo, Experimental Investigations and Modelling of Solid-State Ilmenite Reduction with Hydrogen and Carbon Monoxide, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015 [Google Scholar]
  48. K. Røine, O.A. Asbjørnsen, H. Brattebø, A Systems Approach to Extended Producer Responsibility [ Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU)], in: OECD Workshop “Extended and Shared Responsibility for Products: Economic Efficiency/Environmental Effectiveness”, Washington D.C., December 1–3, 1998 [Google Scholar]
  49. New Webster’s Dictionary of the English Language, Lexicon Publications Inc., Danbury CT, 1992 [Google Scholar]
  50. M.F. Ashby, The Vision: A Circular Materials Economy, in: Materials and Sustainable Development, Butterworth-Heinemann/Elsevier, 2016, pp. 211–239, DOI: 10.1016/B978-0-08-100176-9.00014-1 [Google Scholar]
  51. E. Tempelman, H. Shercliff, B. Ninaber van Eyben, Manufacturing and Design 1st Edition Understanding the Principles of How Things Are Made, Butterworth-Heinemann/Elsevier, 2014, ISBN: 9780080999227, Published on 28th March 2014, 310 p. [Google Scholar]
  52. A.R. Markus, Digitalizing the Circular Economy – Circular Economy Engineering Defined by the Metallurgical Internet of Things, Metall. Mater. Trans. B 47B, 3194–3220 (2016), https://doi.org/10.1007/s11663-016-0735-5 [Google Scholar]
  53. W. Reim, V. Parida, D. Örtqvist, Product-Service Systems (PSS) business models and tactics – A systematic literature review, J. Clean. Prod. 97, 61–75 (2015), DOI: 10.1016/j.jclepro.2014.07.003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.