Numéro
Matériaux & Techniques
Volume 108, Numéro 5-6, 2020
Materials and Society: transitions in society, materials and energy
Numéro d'article 506
Nombre de pages 22
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2021008
Publié en ligne 26 avril 2021
  1. O.-A. Lorentsen, Aluminium, in: M. Tangstad, ed., Metal Production in Norway, Akademika Publishing, Trondheim, 2013, ISBN 978-82-321-0241-9, pp. 25–55 [Google Scholar]
  2. M. Sørlie, H. Øye, Cathodes in Aluminium Electrolysis, 3rd ed., Aluminium Verlag, Dusseldorf, Germany 2010, ISBN 987-3-87017-294-7 [Google Scholar]
  3. T. Krupp, https://www.thyssenkrupp-materials.co.uk/advantages-of-aluminium.html (Accessed 2020/03/18) [Google Scholar]
  4. W.J. Rankin, Minerals, Metals and Sustainability – Meeting Future Material Needs, CRC Press, Taylor & Francis Group, Leiden, Netherlands, 2011, ISBN 978-0-415-68459-0 [Google Scholar]
  5. H.J.T. Ellingham, Reducibility of Oxides and Sulphides in Metallurgical Processes, J. Soc. Chem. Ind. 63, 125–160 (1944), DOI: 10.1002/jctb.5000630501 [CrossRef] [Google Scholar]
  6. World Aluminium, The website of the International Aluminium Institute: Primary Aluminium Smelting Power Consumption, 2020, http://www.world-aluminium.org/statistics/primary-aluminium-smelting-power-consumption/#data (Accessed 2020/04/01) [Google Scholar]
  7. H. Kvande, W. Haupin, Cell voltage in aluminum electrolysis: A practical approach, JOM 52, 31–37 (2000), DOI: 10.1007/s11837-000-0044-x [CrossRef] [Google Scholar]
  8. R. Huglen, H. Kvande, Global Considerations of Aluminium Electrolysis on Energy and the Environment Light Metals 1994, Editor Ulrich Mannweiler, Republished in G. Bearne et al. (Eds.), Essential Readings in Light Metals, © The Minerals, Metals & Materials Society, 2016, pp. 948–955 [CrossRef] [Google Scholar]
  9. P. Mukhopadhyay, Review Article Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys, Int. Scholar. Res. Netw. (2012), Article ID 165082, 15 p., https://doi.org/10.5402/2012/165082 [Google Scholar]
  10. T. Furu, N. Telioui, C. Behrens, J. Hasenclever, P. Schaffer, Trace Elements in Aluminium Alloys: Their Origin and Impact on Processability and Product Properties, in: Proceedings of the 12th International Conference on Aluminium Alloys, September 5–9, 2010, The Japan Institute of Light Metals, Yokohama, Japan, © 2010, pp. 282–289 [Google Scholar]
  11. R. Modaresi, A.N. Løvik, D.B. Müller Component- and Alloy-Specific Modeling for Evaluating Aluminum Recycling Strategies for Vehicles, JOM 66, 2262–2271 (2014), DOI: 10.1007/s11837-014-0900-8 [CrossRef] [Google Scholar]
  12. World Aluminium, The website of the International Aluminium Institute: Global Aluminium Cycle, 2020, http://www.world-aluminium.org/statistics/massflow/ (Accessed 2020/04/01) [Google Scholar]
  13. M. Bertram, S. Ramkumar, H. Rechberger, et al., A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products, Resour. Conserv. Recycl. 125, 48–69 (2017) [CrossRef] [Google Scholar]
  14. J. Cullen, J.M. Allwood, Mapping the global flow of aluminium: From liquid aluminium to end-use goods, Environ. Sci. Technol. 47(7), 3057–3064 (2013), DOI: 10.1021/es304256s [CrossRef] [Google Scholar]
  15. G. Liu, C.E. Bangs, D.B. Müller, Stock dynamics and emission pathways of the global aluminium cycle, Nat. Clim. Change 3, 338–342 (2013), DOI: 10.1038/NCLIMATE1698; www.nature.com/natureclimatechange [CrossRef] [Google Scholar]
  16. A.N. Løvik, R. Modaresi, D.B. Müller, Long-Term Strategies for Increased Recycling of Automotive Aluminum and Its Alloying Elements, Environ. Sci. Technol. 48(8), 4257–4265 (2014), DOI: 10.1021/es405604g [CrossRef] [PubMed] [Google Scholar]
  17. H. Hatayamaa, I. Daigo, Y. Matsuno, Y. Adachi, Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology, Resour. Conserv. Recycl. 66, 8–14 (2012), https://doi.org/10.1016/j.resconrec.2012.06.006 [CrossRef] [Google Scholar]
  18. R. Modaresi, Dynamics of aluminum use in the global passenger car system – Challenges and solutions of recycling and material substitution, PhD Thesis, NTNU Trondheim, Industrial Ecology (IndEcol) Programme, May 2015, 100 p., ISBN 978-82-326-0889-8 (electronic ver.), DOI: 10.13140/RG.2.2.16327.75681; https://www.researchgate.net/publication/331198118 [Google Scholar]
  19. Material Economics, Ett Värdebeständigt Svenskt Materialsystem [In Swedish], Retaining value in the Swedish materials system – Summary [In English], 2018, https://materialeconomics.com/new-publications/ett-vardebestandigt-svenskt-materialsystem [Google Scholar]
  20. G. Djukanovic, Aluminium Alloys in the Automotive Industry: A Handy Guide, 2019, https://aluminiuminsider.com/author/goran-djukanovic/ Accessed 2020-04-02 [Google Scholar]
  21. CM BUSINESS CONSULTING, Assessment of Aluminium Usage in China’s Automobile Industry 2016∼2030, (Executive summary + Report [pptx] + Database[xlsx]), Confidential report prepared by CM group for International Aluminium Institute, 2019 (Files accessed on 2020/04/15), Available from http://www.world-aluminium.org/publications/#822 [Google Scholar]
  22. S. Eggen, K. Sandaunet, L. Kolbeinsen, A. Kvithyld, Recycling of Aluminium from Mixed Household Waste, A. Tomsett (ed.), in: Light Metals, 2020, pp. 1091–1100, The Minerals, Metals & Materials Series, DOI: 10.1007/978-3-030-36408-3_148 [Google Scholar]
  23. M. Gökelma, F. Diaz, I. Elif Öner, B. Friedrich, G. Tranell, An Assessment of Recyclability of Used Aluminium Coffee Capsules, A. Tomsett (ed.), in: Light Metals, 2020, pp. 1101–1108, The Minerals, Metals & Materials Series, DOI: 10.1007/978-3-030-36408-3_149 [Google Scholar]
  24. S. Verschraegen, S. Eggen, Recycling of aluminium containing multilayer packaging, Unpublished internal report – Summer internship SFI Metal Production, NTNU/Sintef, Trondheim, 2019 [Google Scholar]
  25. Hydro, Hydro and partners establish research project on recyclable food packaging, 2020, https://www.hydro.com/en-NO/media/news/2019/hydro-and-partners-establish-research-project-on-recyclable-food-packaging/ (Accessed: 2020-05-06) [Google Scholar]
  26. F. Habashi, Karl Josef Bayer and his time – Part 1, CIM Bull. 97, 61–64 (2004) [Google Scholar]
  27. G.J.J. Aleva, Laterites. Concepts, Geology, Morphologyand Chemistry, ISRIC, Wageningen, 1994, 169 p. ISBN: 90.6672.053.0., Clay Miner. 31, 440–441 (1996), DOI: 10.1180/claymin.1996.031.3.15 [Google Scholar]
  28. G. Bárdossy, G.J.J. Aleva, Lateritic bauxites, Develop. Econ. Geol. 27, Elsevier Science Ltd., 1990 [Google Scholar]
  29. G. Bardossy, Karst bauxites. Bauxite deposits on carbonate rock, Elsevier Scientific Publishing Company, Amsterdam, 1982 [Google Scholar]
  30. F.M. Meyer, Availability of Bauxite Reserves, Nat. Resour. Res. 13, 161–172 (2004), DOI: 10.1023/B:NARR.0000046918.50121.2e [Google Scholar]
  31. P. Smith, The Processing of High Silica Bauxites – Review of Existing and Potential Processes, Hydrometallurgy 98(1-2), 162–176 (2009), DOI: 10.1016/j.hydromet.2009.04.015 [Google Scholar]
  32. B.K. Gan, Z. Taylor, B. Xu, et al., Quantitative phase analysis of bauxites and their dissolution products, Int. J. Miner. Process. 123, 64–72 (2013), DOI: 10.1016/j.minpro.2013.05.005 [Google Scholar]
  33. Materials Science, in: P. Ptacek, ed., Strontium Aluminate – Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications, ISBN 978-953-51-1591-5, Published on July 2, 2014 under CC BY 3.0 license [Google Scholar]
  34. J. Safarian L. Kolbeinsen, Sustainability in Alumina Production from Bauxite, in: Sustainable Industrial Processing Summit (2016), pp. 75–82 [Google Scholar]
  35. H. Sellaeg, L. Kolbeinsen, J. Safarian, Iron Separation from Bauxite Through Smelting-Reduction Process, Miner. Met. Mater. Ser. 127–135 (2017), DOI: 10.1007/978-3-319-51541-0_19 [Google Scholar]
  36. F.I. Azof, L. Kolbeinsen, J. Safarian, The Leachability of Calcium Aluminate Phases in Slags for the Extraction of Alumina, Trav. 46, in: Proc. 35th Int. ICSOBA Conf., Hamburg, 2017, pp. 243–253 [Google Scholar]
  37. H. Pedersen, Process of Manufacturing Aluminum Hydroxide, US Patent 1,618,105 (1927) [Google Scholar]
  38. G.B. Kauffman, The Le Châtelier process for the extraction of alumina, J. Chem. Educ. 68(3), 270 (1991) (Letter), DOI: 10.1021/ed068p270.1; https://pubs.acs.org/action/doSearch?AllField=The+Le+Chatelier+Process+for+the+Extraction+of+Alumina&SeriesKey=jceda8 [Google Scholar]
  39. ENSUREAL, Ensuring zero waste production of Alumina in Europe, https://www.ensureal.com/ [Google Scholar]
  40. F.I. Azof, Pyrometallurgical and Hydrometallurgical Treatment of Calcium Aluminate-containing Slags for Alumina Recovery, PhD Thesis, Norwegian University of Science and Technology (NTNU), Faculty of Natural Sciences (NV), Department of Materials Science and Engineering (IMA), Trondheim, 2020 [Google Scholar]
  41. F.I. Azof, Y. Yang, D. Panias, L. Kolbeinsen, J. Safarian, Leaching characteristics and mechanism of the synthetic calcium-aluminate slags for alumina recovery, Hydrometallurgy 185, 273–290 (2019), DOI: 10.1016/j.hydromet.2019.03.006 [Google Scholar]
  42. F.I. Azof, L. Kolbeinsen, J. Safarian, Characteristics of calcium-aluminate slags and pig Iron produced from smelting-reduction of low-grade bauxites, Metall. Mater. Trans. 49, 2400–2420 (2018), DOI: 10.1007/s11663-018-1353-1 [Google Scholar]
  43. F.I. Azof, M. Vafeias, D. Panias, J. Safarian, The leachability of a ternary CaOAl2O3-SiO2 slag produced from smelting-reduction of low-grade bauxite for alumina recovery, Hydrometallurgy 191, 105184 (2020) DOI: 10.1016/j.hydromet.2019.105184 [Google Scholar]
  44. E. Nedkvitne, Leaching and Precipitation Experiments Related to the Pedersen Process, MSc. Thesis, NTNU, 2019 [Google Scholar]
  45. A. Lazou, C. van der Eijk, E. Balomenos, L. Kolbeinsen, J. Safarian, On the Direct Reduction Phenomena of Bauxite Ore Using H2 Gas in a Fixed Bed Reactor, J. Sustain. Metall. 6, 227–238 (2020), Published online: 28 March 2020. DOI: 10.1007/s40831-020-00268-5 [Google Scholar]
  46. S. Seim, Experimental investigations and phase relations in the liquid FeTiO3-Ti2O3-TiO2 slag system, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2011 [Google Scholar]
  47. S.C. Lobo, Experimental Investigations and Modelling of Solid-State Ilmenite Reduction with Hydrogen and Carbon Monoxide, PhD Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015 [Google Scholar]
  48. K. Røine, O.A. Asbjørnsen, H. Brattebø, A Systems Approach to Extended Producer Responsibility [ Industrial Ecology Programme, Norwegian University of Science and Technology (NTNU)], in: OECD Workshop “Extended and Shared Responsibility for Products: Economic Efficiency/Environmental Effectiveness”, Washington D.C., December 1–3, 1998 [Google Scholar]
  49. New Webster’s Dictionary of the English Language, Lexicon Publications Inc., Danbury CT, 1992 [Google Scholar]
  50. M.F. Ashby, The Vision: A Circular Materials Economy, in: Materials and Sustainable Development, Butterworth-Heinemann/Elsevier, 2016, pp. 211–239, DOI: 10.1016/B978-0-08-100176-9.00014-1 [Google Scholar]
  51. E. Tempelman, H. Shercliff, B. Ninaber van Eyben, Manufacturing and Design 1st Edition Understanding the Principles of How Things Are Made, Butterworth-Heinemann/Elsevier, 2014, ISBN: 9780080999227, Published on 28th March 2014, 310 p. [Google Scholar]
  52. A.R. Markus, Digitalizing the Circular Economy – Circular Economy Engineering Defined by the Metallurgical Internet of Things, Metall. Mater. Trans. B 47B, 3194–3220 (2016), https://doi.org/10.1007/s11663-016-0735-5 [Google Scholar]
  53. W. Reim, V. Parida, D. Örtqvist, Product-Service Systems (PSS) business models and tactics – A systematic literature review, J. Clean. Prod. 97, 61–75 (2015), DOI: 10.1016/j.jclepro.2014.07.003 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.