Issue
Matériaux & Techniques
Volume 106, Number 1, 2018
Control, modeling and characterization of heat treatment and surface engineering
Article Number 105
Number of page(s) 7
Section Modélisation et simulation : procédés d’élaboration et de traitement / Modelling and simulation : materials processing
DOI https://doi.org/10.1051/mattech/2018034
Published online 01 August 2018
  1. P. Bernard, S. Bag, K. Huang, R.E. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Mat. Sci. Eng. A 528, 7357 (2011) [CrossRef] [Google Scholar]
  2. M. Mukherjee, U. Prahl, W. Bleck, Modelling of microstructure and flow stress evolution during hot forging, Steel Res. Int. 81, 1102 (2010) [CrossRef] [Google Scholar]
  3. A.D. Rollett, D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Comp. Mater. Sci. 21, 69 (2001) [CrossRef] [Google Scholar]
  4. K. Piękoś, J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Generalized Vertex Model-Study of recrystallization in copper, Mater. Sci. Forum 558-559, 1157 (2007) [CrossRef] [Google Scholar]
  5. L.Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res. 32, 113 (2002) [CrossRef] [Google Scholar]
  6. M. Bernacki, H. Resk, T. Coupez, R.E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Mod. Sim. Mat. Sci. Eng. 17, 064006 (2009) [CrossRef] [Google Scholar]
  7. M. Bernacki, R.E. Logé, T. Coupez, Level set framework for the finite-element modelling of recrystal- lization and grain growth in polycrystalline materials, Scr. Mat. 64, 525 (2011) [CrossRef] [Google Scholar]
  8. A.L. Cruz-Fabiano, R. Logé, M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Comp. Mat. Sci. 92, 305 (2014) [CrossRef] [Google Scholar]
  9. A. Agnoli, N. Bozzolo, R.E. Logé, J.-M. Franchet, J. Laigo, M. Bernacki, Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy- application to a nickel-base superalloy, Comp. Mat. Sci. 89, 233 (2014) [CrossRef] [Google Scholar]
  10. M. Shakoor, B. Scholtes, P.-O. Bouchard, M. Bernacki, An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions, App. Math. Mod. 39, 7291 (2015) [CrossRef] [Google Scholar]
  11. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, M. Bernacki, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Comp. Mat. Sci. 109, 388 (2015) [CrossRef] [Google Scholar]
  12. K. Hitti, P. Laure, T. Coupez, L. Silva, M. Bernacki, Precise generation of complex statistical representative volume elements (RVEs) in a finite element context, Comp. Mat. Sci. 61, 224 (2012) [CrossRef] [Google Scholar]
  13. K. Hitti, M. Bernacki, Optimized Dropping and Rolling (ODR) method for packing of polydisperse spheres, App. Math. Model. 37, 5715 (2013) [CrossRef] [Google Scholar]
  14. J.E. Burke, D. Turnbull, Recrystallization and grain growth, Prog. in Met. Phys. 3, 220 (1952) [CrossRef] [Google Scholar]
  15. C. Zener, C.S. Smith, Grains, Phases and interfaces interpretation of microstructures, Trans. AIME 175, 15 (1948). [Google Scholar]
  16. B. Scholtes, D. Ilin, A. Settefrati, N. Bozzolo, A. Agnoli, M. Bernacki, Full field modeling of the Zener pinning phenomenon in a level set framework − discussion of classical limiting mean grain size equation, Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, 2016, pp. 497–503. [Google Scholar]
  17. B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. Pino Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, 3D level set modeling of static recrystallization considering stored energy fields, Comp. Mater. Sci. 122, 57 (2016) [CrossRef] [Google Scholar]
  18. D.N. Ilin, N. Bozzolo, T. Toulorge, M. Bernacki. Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics. Comp. Mater. Sci. 150, 149 (2018) [CrossRef] [Google Scholar]
  19. L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino Muñoz, A. Settefrati, M. Bernacki, Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Materials & Design 133, 498 (2017) [CrossRef] [Google Scholar]
  20. L. Maire, J. Fausty, M. Bernacki, N. Bozzolo, P. De Micheli, C. Moussa. A new topological approach for the mean field modeling of dynamic recrystallization. Materials & Design 146, 194 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.