Numéro
Matériaux & Techniques
Volume 106, Numéro 1, 2018
Control, modeling and characterization of heat treatment and surface engineering
Numéro d'article 105
Nombre de pages 7
Section Modélisation et simulation : procédés d’élaboration et de traitement / Modelling and simulation : materials processing
DOI https://doi.org/10.1051/mattech/2018034
Publié en ligne 1 août 2018
  1. P. Bernard, S. Bag, K. Huang, R.E. Logé, A two-site mean field model of discontinuous dynamic recrystallization, Mat. Sci. Eng. A 528, 7357 (2011) [CrossRef] [Google Scholar]
  2. M. Mukherjee, U. Prahl, W. Bleck, Modelling of microstructure and flow stress evolution during hot forging, Steel Res. Int. 81, 1102 (2010) [CrossRef] [Google Scholar]
  3. A.D. Rollett, D. Raabe, A hybrid model for mesoscopic simulation of recrystallization, Comp. Mater. Sci. 21, 69 (2001) [CrossRef] [Google Scholar]
  4. K. Piękoś, J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Generalized Vertex Model-Study of recrystallization in copper, Mater. Sci. Forum 558-559, 1157 (2007) [CrossRef] [Google Scholar]
  5. L.Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res. 32, 113 (2002) [CrossRef] [Google Scholar]
  6. M. Bernacki, H. Resk, T. Coupez, R.E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Mod. Sim. Mat. Sci. Eng. 17, 064006 (2009) [CrossRef] [Google Scholar]
  7. M. Bernacki, R.E. Logé, T. Coupez, Level set framework for the finite-element modelling of recrystal- lization and grain growth in polycrystalline materials, Scr. Mat. 64, 525 (2011) [CrossRef] [Google Scholar]
  8. A.L. Cruz-Fabiano, R. Logé, M. Bernacki, Assessment of simplified 2D grain growth models from numerical experiments based on a level set framework, Comp. Mat. Sci. 92, 305 (2014) [CrossRef] [Google Scholar]
  9. A. Agnoli, N. Bozzolo, R.E. Logé, J.-M. Franchet, J. Laigo, M. Bernacki, Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy- application to a nickel-base superalloy, Comp. Mat. Sci. 89, 233 (2014) [CrossRef] [Google Scholar]
  10. M. Shakoor, B. Scholtes, P.-O. Bouchard, M. Bernacki, An efficient and parallel level set reinitialization method-application to micromechanics and microstructural evolutions, App. Math. Mod. 39, 7291 (2015) [CrossRef] [Google Scholar]
  11. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo, M. Bernacki, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Comp. Mat. Sci. 109, 388 (2015) [CrossRef] [Google Scholar]
  12. K. Hitti, P. Laure, T. Coupez, L. Silva, M. Bernacki, Precise generation of complex statistical representative volume elements (RVEs) in a finite element context, Comp. Mat. Sci. 61, 224 (2012) [CrossRef] [Google Scholar]
  13. K. Hitti, M. Bernacki, Optimized Dropping and Rolling (ODR) method for packing of polydisperse spheres, App. Math. Model. 37, 5715 (2013) [CrossRef] [Google Scholar]
  14. J.E. Burke, D. Turnbull, Recrystallization and grain growth, Prog. in Met. Phys. 3, 220 (1952) [CrossRef] [Google Scholar]
  15. C. Zener, C.S. Smith, Grains, Phases and interfaces interpretation of microstructures, Trans. AIME 175, 15 (1948). [Google Scholar]
  16. B. Scholtes, D. Ilin, A. Settefrati, N. Bozzolo, A. Agnoli, M. Bernacki, Full field modeling of the Zener pinning phenomenon in a level set framework − discussion of classical limiting mean grain size equation, Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, 2016, pp. 497–503. [Google Scholar]
  17. B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. Pino Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, 3D level set modeling of static recrystallization considering stored energy fields, Comp. Mater. Sci. 122, 57 (2016) [CrossRef] [Google Scholar]
  18. D.N. Ilin, N. Bozzolo, T. Toulorge, M. Bernacki. Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics. Comp. Mater. Sci. 150, 149 (2018) [CrossRef] [Google Scholar]
  19. L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D. Pino Muñoz, A. Settefrati, M. Bernacki, Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Materials & Design 133, 498 (2017) [CrossRef] [Google Scholar]
  20. L. Maire, J. Fausty, M. Bernacki, N. Bozzolo, P. De Micheli, C. Moussa. A new topological approach for the mean field modeling of dynamic recrystallization. Materials & Design 146, 194 (2018) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.