Numéro |
Matériaux & Techniques
Volume 108, Numéro 2, 2020
Impact of microorganisms on cementitious materials
|
|
---|---|---|
Numéro d'article | 202 | |
Nombre de pages | 8 | |
Section | Vieillissement et durabilité / Ageing and durability | |
DOI | https://doi.org/10.1051/mattech/2020020 | |
Publié en ligne | 12 août 2020 |
- S. Dupray, G. Robertshaw, N. Bean, K. Gamst, L’utilisation du béton pour les ouvrages maritimes : synthèse franco-anglaise des bonnes pratiques, in: Xes Journées, Sophia Antipolis, Editions Paralia, 2008, pp. 719–728, https://doi.org/10.5150/jngcgc.2008.068-D [Google Scholar]
- M. Sosa, T. Pérez-López, J. Reyes, F. Corvo, R. Camacho-Chab, P. Quintana, D. Aguilar, Influence of the marine environment on reinforced concrete degradation depending on exposure conditions, Int. J. Electrochem. Sci. 6, 19 (2011) [Google Scholar]
- C. Munzer, Étude de l’action d’un bioadjuvant aux substances extracellulaires sur la microstructure et les caractéristiques de surface de pâtes cimentaires pour des bétons plus éco-respectueux, PhD Thesis, Université de Strasbourg, 2016 [Google Scholar]
- K.B. Ahmed, Étude de l’encrassement biologique de matériaux cimentaires en eau de rivière : analyse de l’influence des paramètres de surface des pâtes cimentaires, PhD Thesis, Université de Strasbourg, 2016. https://tel.archives-ouvertes.fr/tel-01544842/document (accessed September 27, 2018) [Google Scholar]
- V. Georges, S. Roux, F. Feugeas, A. Lecomte, Colonisation biologique de pâtes de ciment exposées à une eau douce naturelle, Matériaux & Techniques 105, 204 (2017), https://doi.org/10.1051/mattech/2017030 [CrossRef] [EDP Sciences] [Google Scholar]
- S. Dobretsov, H.-U. Dahms, P.-Y. Qian, Inhibition of biofouling by marine microorganisms and their metabolites, Biofouling 22, 43–54 (2006) [CrossRef] [Google Scholar]
- N. Fusetani, Biofouling and antifouling, Nat. Prod Rep. 21, 94–104 (2004) [CrossRef] [Google Scholar]
- H.-C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Biofouling the Achilles heel of membrane processes, Desalination 113, 215–225 (1997) [CrossRef] [Google Scholar]
- N.M. Farhat, L. Javier, M.C.M. Van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability, Water Res. 150, 1–11 (2019), https://doi.org/10.1016/j.watres.2018.11.054 [CrossRef] [Google Scholar]
- S. Dobretsov, R.M.M. Abed, M. Teplitski, Mini-review: Inhibition of biofouling by marine microorganisms, Biofouling 29, 423–441 (2013), https://doi.org/10.1080/08927014.2013.776042 [CrossRef] [Google Scholar]
- L.V. Evans, Structure and function of biofilms, in: Biofilms, CRC Press, 2000, pp. 16–33 [CrossRef] [Google Scholar]
- P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Ann. Rev. Microbiol. 56, 187–209 (2002) [CrossRef] [PubMed] [Google Scholar]
- M. Hayek, C. Baraquet, R. Lami, Y. Blache, M. Molmeret, The Marine Bacterium Shewanella woodyi Produces C8-HSL to Regulate Bioluminescence, Microb Ecol. (2019), https://doi.org/10.1007/s00248-019-01454-z [Google Scholar]
- M. Salta, J.A. Wharton, Y. Blache, K.R. Stokes, J.-F. Briand, Marine biofilms on artificial surfaces: structure and dynamics, Environ. Microbiol. 15, 2879–2893 (2013), https://doi.org/10.1111/1462-2920.12186 [Google Scholar]
- F. Brian-Jaisson, A. Ortalo-Magné, L. Guentas-Dombrowsky, F. Armougom, Y. Blache, M. Molmeret, Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation, Microb. Ecol. 68, 94–110 (2014), https://doi.org/10.1007/s00248-013-0342-9 [CrossRef] [Google Scholar]
- J.-F. Briand, X. Pochon, S.A. Wood, C. Bressy, C. Garnier, K. Réhel, F. Urvois, G. Culioli, A. Zaiko, Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts, Biofouling 34, 657–672 (2018), https://doi.org/10.1080/08927014.2018.1480757 [CrossRef] [Google Scholar]
- M. Sanchez-Silva, V. Rosowsky David, Biodeterioration of construction materials: state of the art and future challenges, J. Mater. Civil Eng. 20, 352–365 (2008), https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352) [CrossRef] [Google Scholar]
- S. Roux, F. Feugeas, A. Cornet, Biodégradation des bétons : analyse des bétons et mortiers en contact avec une eau douce naturelle, Matériaux & Techniques. 93, 123 (2005) [CrossRef] [Google Scholar]
- S. Wei, Z. Jiang, H. Liu, D. Zhou, M. Sanchez-Silva, Microbiologically induced deterioration of concrete – A review, Braz. J. Microbiol. 44, 1001–1007 (2014), https://doi.org/10.1590/S1517-83822014005000006 [CrossRef] [Google Scholar]
- B.T. Patil, M.R. Gajendragad, G. Ranganna, A.B. Wagh, T. Sudhakaran, Impact of biofouling on corrosion resistance of reinforced concrete, (1994), http://agris.fao.org/agris-search/search.do?recordID=AV20120139400 (accessed August 22, 2019) [Google Scholar]
- S. Soleimani, B. Ormeci, O.B. Isgor, Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD), Appl. Microbiol. Biotechnol. 97, 1093–1102 (2013) [CrossRef] [Google Scholar]
- S. Perkol-Finkel, I. Sella, Ecologically active concrete for coastal and marine infrastructure: Innovative matrices and designs, in: From sea to shore? Meeting the challenges of the sea, ICE Publishing, 2014, pp. 1139–1149, https://doi.org/10.1680/fsts.59757.124 [Google Scholar]
- M.A. Coombes, H.A. Viles, L.A. Naylor, E.C. La Marca, Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?, Sci. Total Environ. 580, 1034–1045 (2017), https://doi.org/10.1016/j.scitotenv.2016.12.058 [CrossRef] [Google Scholar]
- T. Chlayon, M. Iwanami, N. Chijiwa, Combined protective action of barnacles and biofilm on concrete surface in intertidal areas, Construct. Build. Mater. 179, 477–487 (2018), https://doi.org/10.1016/j.conbuildmat.2018.05.223 [CrossRef] [Google Scholar]
- F. Bartoli, A.C. Municchia, Y. Futagami, H. Kashiwadani, K.H. Moon, G. Caneva, Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate, Int. Biodeterior. Biodegrad. 96, 157–165 (2014), https://doi.org/10.1016/j.ibiod.2014.09.015 [CrossRef] [Google Scholar]
- S. Pande, S. Shitut, L. Freund, M. Westermann, F. Bertels, C. Colesie, I.B. Bischofs, C. Kost, Metabolic cross-feeding via intercellular nanotubes among bacteria, Nat. Commun. 6, (2015), https://doi.org/10.1038/ncomms7238 [CrossRef] [Google Scholar]
- C. Lors, F. Feugeas, B. Tribollet, Interactions matériaux-microorganismes : bétons et métaux plus résistants à la biodétérioration, EDP Sciences, 2017 [Google Scholar]
- A. Dubosc, Étude du développement de salissures biologiques sur les parements en béton : mise au point d’essais accélérés de vieillissement, PhD Thesis, Toulouse, INSA, 2000 [Google Scholar]
- E. Dalod, Influence de la composition chimique de mortiers sur leur biodétérioration par les algues, PhD Thesis, École Nationale Supérieure des Mines de Saint-Etienne, 2015, https://tel.archives-ouvertes.fr/tel-01148160/document (accessed October 9, 2018) [Google Scholar]
- J.-C. Souche, S. Pioch, M. Salgues, K.D. Weerdt, A. Agostini, M. Hayek, De la conception à l’éco-conception des ouvrages maritimes : intégrer la nature au projet d’aménagement maritime, Revue Paralia. 12, (2019), https://doi.org/10.5150/revue-paralia.2019.n01 [Google Scholar]
- J.-C. Souche, G. Le Saout, M. Salgues, S. Pioch, Effets de bétons bio-actifs sur la colonisation marine en environnement méditerranéen, Matériaux & Techniques 104, 504 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
- T.H. Tran, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, E. Garcia-Diaz, D. Damidot, O. Devès, B. Ruot, Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum, Int. Biodeterior. Biodegrad. 70, 31–39 (2012), https://doi.org/10.1016/j.ibiod.2011.10.017 [CrossRef] [Google Scholar]
- T.H. Tran, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, O. Devès, B. Ruot, Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: Comparison between laboratory and field-scale experiments, Int. Biodeterior. Biodegrad. 86, 334–342 (2014), https://doi.org/10.1016/j.ibiod.2013.10.005 [CrossRef] [Google Scholar]
- A. Govin, T.H. Tran, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, O. Devès, B. Ruot, Ability in biofouling by Klebsormidium flaccidum of mortars: Influence of the intrinsic characteristics, in: First International Conference on Concrete Sustainability (ICCS), 2013, pp. 914–919 [Google Scholar]
- O. Guillitte, Bioreceptivity: a new concept for building ecology studies, Sci. Total Environ. 167, 215–220 (1995), https://doi.org/10.1016/0048-9697(95)04582-L [CrossRef] [Google Scholar]
- D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky, Effects of concrete properties and nutrients on fungal colonization and fouling, Int. Biodeterior. Biodegrad. 63, 252–259 (2009), https://doi.org/10.1016/j.ibiod.2008.10.002 [CrossRef] [Google Scholar]
- A.Z. Miller, P. Sanmartín, L. Pereira-Pardo, A. Dionísio, C. Saiz-Jimenez, M.F. Macedo, B. Prieto, Bioreceptivity of building stones: A review, Sci. Total Environ. 426, 1–12 (2012), https://doi.org/10.1016/j.scitotenv.2012.03.026 [CrossRef] [Google Scholar]
- C. Munzer, E. Belhaj, T. Meylheuc, A. Lecomte, F. Feugeas, Effets d’un bioadjuvant sur les caractéristiques de surface de pâtes cimentaires, Matériaux & Techniques 103, 208 (2015), https://doi.org/10.1051/mattech/2015024 [CrossRef] [EDP Sciences] [Google Scholar]
- C. Grant, Fouling of terrestrial substrates by algae and implications for control – A review, Int. Biodeterior. Bull. 18, 57–65 (1982) [Google Scholar]
- K.M. Dooley, F.C. Knopf, R.P. Gambrell, Ph-neutral concrete for attached microalgae and enhanced carbon dioxide fixation – Phase I, Federal Energy Technology Center, Morgantown, WV (US), Federal Energy Technology Center, Pittsburgh, PA (US), 1999, https://doi.org/10.2172/778919 [CrossRef] [Google Scholar]
- B.P. Guilbeau, F.P. Harry, R.P. Gambrell, F.C. Knopf, K.M. Dooley, Algae attachment on carbonated cements in fresh and brackish waters – Preliminary results, Ecol. Eng. 20, 309–319 (2003), https://doi.org/10.1016/S0925-8574(03)00026-0 [CrossRef] [Google Scholar]
- B. Prieto, B. Silva, O. Lantes, Biofilm quantification on stone surfaces: comparison of various methods, Sci. Total Environ. 333, 1–7 (2004), https://doi.org/10.1016/j.scitotenv.2004.05.003 [CrossRef] [Google Scholar]
- G.D. Bixler, B. Bhushan, Biofouling: Lessons from nature, Philos. Trans. Royal Soc. A: Mathemat. Phys. Eng. Sci. 370, 2381–2417 (2012), https://doi.org/10.1098/rsta.2011.0502 [Google Scholar]
- H. Barberousse, Étude de la diversité des algues et des cyanobactéries colonisant les revêtements de façade en France et recherche des facteurs favorisant leur implantation, 2006. [Google Scholar]
- E. Dalod, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, Influence of the chemical composition of mortars on algal biofouling, in: K.L. Fentiman, C.H. Mangabhai, R.J. Scrivener (Eds.), International Conference on Calcium Aluminates, IHS BRE Press, Palais des Papes, Avignon, France, 2014 pp. 523–534, https://hal.archives-ouvertes.fr/hal-01053366 (accessed October 16, 2018) [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.