Issue
Matériaux & Techniques
Volume 108, Number 2, 2020
Impact of microorganisms on cementitious materials
Article Number 202
Number of page(s) 8
Section Vieillissement et durabilité / Ageing and durability
DOI https://doi.org/10.1051/mattech/2020020
Published online 12 August 2020
  1. S. Dupray, G. Robertshaw, N. Bean, K. Gamst, L’utilisation du béton pour les ouvrages maritimes : synthèse franco-anglaise des bonnes pratiques, in: Xes Journées, Sophia Antipolis, Editions Paralia, 2008, pp. 719–728, https://doi.org/10.5150/jngcgc.2008.068-D [Google Scholar]
  2. M. Sosa, T. Pérez-López, J. Reyes, F. Corvo, R. Camacho-Chab, P. Quintana, D. Aguilar, Influence of the marine environment on reinforced concrete degradation depending on exposure conditions, Int. J. Electrochem. Sci. 6, 19 (2011) [Google Scholar]
  3. C. Munzer, Étude de l’action d’un bioadjuvant aux substances extracellulaires sur la microstructure et les caractéristiques de surface de pâtes cimentaires pour des bétons plus éco-respectueux, PhD Thesis, Université de Strasbourg, 2016 [Google Scholar]
  4. K.B. Ahmed, Étude de l’encrassement biologique de matériaux cimentaires en eau de rivière : analyse de l’influence des paramètres de surface des pâtes cimentaires, PhD Thesis, Université de Strasbourg, 2016. https://tel.archives-ouvertes.fr/tel-01544842/document (accessed September 27, 2018) [Google Scholar]
  5. V. Georges, S. Roux, F. Feugeas, A. Lecomte, Colonisation biologique de pâtes de ciment exposées à une eau douce naturelle, Matériaux & Techniques 105, 204 (2017), https://doi.org/10.1051/mattech/2017030 [EDP Sciences] [Google Scholar]
  6. S. Dobretsov, H.-U. Dahms, P.-Y. Qian, Inhibition of biofouling by marine microorganisms and their metabolites, Biofouling 22, 43–54 (2006) [Google Scholar]
  7. N. Fusetani, Biofouling and antifouling, Nat. Prod Rep. 21, 94–104 (2004) [Google Scholar]
  8. H.-C. Flemming, G. Schaule, T. Griebe, J. Schmitt, A. Tamachkiarowa, Biofouling the Achilles heel of membrane processes, Desalination 113, 215–225 (1997) [Google Scholar]
  9. N.M. Farhat, L. Javier, M.C.M. Van Loosdrecht, J.C. Kruithof, J.S. Vrouwenvelder, Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability, Water Res. 150, 1–11 (2019), https://doi.org/10.1016/j.watres.2018.11.054 [Google Scholar]
  10. S. Dobretsov, R.M.M. Abed, M. Teplitski, Mini-review: Inhibition of biofouling by marine microorganisms, Biofouling 29, 423–441 (2013), https://doi.org/10.1080/08927014.2013.776042 [Google Scholar]
  11. L.V. Evans, Structure and function of biofilms, in: Biofilms, CRC Press, 2000, pp. 16–33 [Google Scholar]
  12. P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Ann. Rev. Microbiol. 56, 187–209 (2002) [Google Scholar]
  13. M. Hayek, C. Baraquet, R. Lami, Y. Blache, M. Molmeret, The Marine Bacterium Shewanella woodyi Produces C8-HSL to Regulate Bioluminescence, Microb Ecol. (2019), https://doi.org/10.1007/s00248-019-01454-z [Google Scholar]
  14. M. Salta, J.A. Wharton, Y. Blache, K.R. Stokes, J.-F. Briand, Marine biofilms on artificial surfaces: structure and dynamics, Environ. Microbiol. 15, 2879–2893 (2013), https://doi.org/10.1111/1462-2920.12186 [Google Scholar]
  15. F. Brian-Jaisson, A. Ortalo-Magné, L. Guentas-Dombrowsky, F. Armougom, Y. Blache, M. Molmeret, Identification of bacterial strains isolated from the Mediterranean Sea exhibiting different abilities of biofilm formation, Microb. Ecol. 68, 94–110 (2014), https://doi.org/10.1007/s00248-013-0342-9 [Google Scholar]
  16. J.-F. Briand, X. Pochon, S.A. Wood, C. Bressy, C. Garnier, K. Réhel, F. Urvois, G. Culioli, A. Zaiko, Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts, Biofouling 34, 657–672 (2018), https://doi.org/10.1080/08927014.2018.1480757 [Google Scholar]
  17. M. Sanchez-Silva, V. Rosowsky David, Biodeterioration of construction materials: state of the art and future challenges, J. Mater. Civil Eng. 20, 352–365 (2008), https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352) [Google Scholar]
  18. S. Roux, F. Feugeas, A. Cornet, Biodégradation des bétons : analyse des bétons et mortiers en contact avec une eau douce naturelle, Matériaux & Techniques. 93, 123 (2005) [Google Scholar]
  19. S. Wei, Z. Jiang, H. Liu, D. Zhou, M. Sanchez-Silva, Microbiologically induced deterioration of concrete – A review, Braz. J. Microbiol. 44, 1001–1007 (2014), https://doi.org/10.1590/S1517-83822014005000006 [CrossRef] [Google Scholar]
  20. B.T. Patil, M.R. Gajendragad, G. Ranganna, A.B. Wagh, T. Sudhakaran, Impact of biofouling on corrosion resistance of reinforced concrete, (1994), http://agris.fao.org/agris-search/search.do?recordID=AV20120139400 (accessed August 22, 2019) [Google Scholar]
  21. S. Soleimani, B. Ormeci, O.B. Isgor, Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD), Appl. Microbiol. Biotechnol. 97, 1093–1102 (2013) [CrossRef] [Google Scholar]
  22. S. Perkol-Finkel, I. Sella, Ecologically active concrete for coastal and marine infrastructure: Innovative matrices and designs, in: From sea to shore? Meeting the challenges of the sea, ICE Publishing, 2014, pp. 1139–1149, https://doi.org/10.1680/fsts.59757.124 [Google Scholar]
  23. M.A. Coombes, H.A. Viles, L.A. Naylor, E.C. La Marca, Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?, Sci. Total Environ. 580, 1034–1045 (2017), https://doi.org/10.1016/j.scitotenv.2016.12.058 [CrossRef] [Google Scholar]
  24. T. Chlayon, M. Iwanami, N. Chijiwa, Combined protective action of barnacles and biofilm on concrete surface in intertidal areas, Construct. Build. Mater. 179, 477–487 (2018), https://doi.org/10.1016/j.conbuildmat.2018.05.223 [CrossRef] [Google Scholar]
  25. F. Bartoli, A.C. Municchia, Y. Futagami, H. Kashiwadani, K.H. Moon, G. Caneva, Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate, Int. Biodeterior. Biodegrad. 96, 157–165 (2014), https://doi.org/10.1016/j.ibiod.2014.09.015 [CrossRef] [Google Scholar]
  26. S. Pande, S. Shitut, L. Freund, M. Westermann, F. Bertels, C. Colesie, I.B. Bischofs, C. Kost, Metabolic cross-feeding via intercellular nanotubes among bacteria, Nat. Commun. 6, (2015), https://doi.org/10.1038/ncomms7238 [CrossRef] [Google Scholar]
  27. C. Lors, F. Feugeas, B. Tribollet, Interactions matériaux-microorganismes : bétons et métaux plus résistants à la biodétérioration, EDP Sciences, 2017 [Google Scholar]
  28. A. Dubosc, Étude du développement de salissures biologiques sur les parements en béton : mise au point d’essais accélérés de vieillissement, PhD Thesis, Toulouse, INSA, 2000 [Google Scholar]
  29. E. Dalod, Influence de la composition chimique de mortiers sur leur biodétérioration par les algues, PhD Thesis, École Nationale Supérieure des Mines de Saint-Etienne, 2015, https://tel.archives-ouvertes.fr/tel-01148160/document (accessed October 9, 2018) [Google Scholar]
  30. J.-C. Souche, S. Pioch, M. Salgues, K.D. Weerdt, A. Agostini, M. Hayek, De la conception à l’éco-conception des ouvrages maritimes : intégrer la nature au projet d’aménagement maritime, Revue Paralia. 12, (2019), https://doi.org/10.5150/revue-paralia.2019.n01 [Google Scholar]
  31. J.-C. Souche, G. Le Saout, M. Salgues, S. Pioch, Effets de bétons bio-actifs sur la colonisation marine en environnement méditerranéen, Matériaux & Techniques 104, 504 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  32. T.H. Tran, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, E. Garcia-Diaz, D. Damidot, O. Devès, B. Ruot, Influence of the intrinsic characteristics of mortars on biofouling by Klebsormidium flaccidum, Int. Biodeterior. Biodegrad. 70, 31–39 (2012), https://doi.org/10.1016/j.ibiod.2011.10.017 [CrossRef] [Google Scholar]
  33. T.H. Tran, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, O. Devès, B. Ruot, Influence of the intrinsic characteristics of mortars on their biofouling by pigmented organisms: Comparison between laboratory and field-scale experiments, Int. Biodeterior. Biodegrad. 86, 334–342 (2014), https://doi.org/10.1016/j.ibiod.2013.10.005 [CrossRef] [Google Scholar]
  34. A. Govin, T.H. Tran, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, O. Devès, B. Ruot, Ability in biofouling by Klebsormidium flaccidum of mortars: Influence of the intrinsic characteristics, in: First International Conference on Concrete Sustainability (ICCS), 2013, pp. 914–919 [Google Scholar]
  35. O. Guillitte, Bioreceptivity: a new concept for building ecology studies, Sci. Total Environ. 167, 215–220 (1995), https://doi.org/10.1016/0048-9697(95)04582-L [CrossRef] [Google Scholar]
  36. D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky, Effects of concrete properties and nutrients on fungal colonization and fouling, Int. Biodeterior. Biodegrad. 63, 252–259 (2009), https://doi.org/10.1016/j.ibiod.2008.10.002 [CrossRef] [Google Scholar]
  37. A.Z. Miller, P. Sanmartín, L. Pereira-Pardo, A. Dionísio, C. Saiz-Jimenez, M.F. Macedo, B. Prieto, Bioreceptivity of building stones: A review, Sci. Total Environ. 426, 1–12 (2012), https://doi.org/10.1016/j.scitotenv.2012.03.026 [CrossRef] [Google Scholar]
  38. C. Munzer, E. Belhaj, T. Meylheuc, A. Lecomte, F. Feugeas, Effets d’un bioadjuvant sur les caractéristiques de surface de pâtes cimentaires, Matériaux & Techniques 103, 208 (2015), https://doi.org/10.1051/mattech/2015024 [CrossRef] [EDP Sciences] [Google Scholar]
  39. C. Grant, Fouling of terrestrial substrates by algae and implications for control – A review, Int. Biodeterior. Bull. 18, 57–65 (1982) [Google Scholar]
  40. K.M. Dooley, F.C. Knopf, R.P. Gambrell, Ph-neutral concrete for attached microalgae and enhanced carbon dioxide fixation – Phase I, Federal Energy Technology Center, Morgantown, WV (US), Federal Energy Technology Center, Pittsburgh, PA (US), 1999, https://doi.org/10.2172/778919 [CrossRef] [Google Scholar]
  41. B.P. Guilbeau, F.P. Harry, R.P. Gambrell, F.C. Knopf, K.M. Dooley, Algae attachment on carbonated cements in fresh and brackish waters – Preliminary results, Ecol. Eng. 20, 309–319 (2003), https://doi.org/10.1016/S0925-8574(03)00026-0 [CrossRef] [Google Scholar]
  42. B. Prieto, B. Silva, O. Lantes, Biofilm quantification on stone surfaces: comparison of various methods, Sci. Total Environ. 333, 1–7 (2004), https://doi.org/10.1016/j.scitotenv.2004.05.003 [CrossRef] [Google Scholar]
  43. G.D. Bixler, B. Bhushan, Biofouling: Lessons from nature, Philos. Trans. Royal Soc. A: Mathemat. Phys. Eng. Sci. 370, 2381–2417 (2012), https://doi.org/10.1098/rsta.2011.0502 [CrossRef] [Google Scholar]
  44. H. Barberousse, Étude de la diversité des algues et des cyanobactéries colonisant les revêtements de façade en France et recherche des facteurs favorisant leur implantation, 2006. [Google Scholar]
  45. E. Dalod, A. Govin, R. Guyonnet, P. Grosseau, C. Lors, D. Damidot, Influence of the chemical composition of mortars on algal biofouling, in: K.L. Fentiman, C.H. Mangabhai, R.J. Scrivener (Eds.), International Conference on Calcium Aluminates, IHS BRE Press, Palais des Papes, Avignon, France, 2014 pp. 523–534, https://hal.archives-ouvertes.fr/hal-01053366 (accessed October 16, 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.