Open Access
Numéro
Matériaux & Techniques
Volume 106, Numéro 6, 2018
Numéro d'article 604
Nombre de pages 14
Section Métaux et alliages / Metals and alloys
DOI https://doi.org/10.1051/mattech/2018058
Publié en ligne 15 février 2019
  1. J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1, 153 (1953) [CrossRef] [Google Scholar]
  2. E. Kröner, Continuum theory of defects, in: Balian R. et al. (Eds.), Physics of defects, Les Houches, Session XXXV, 1980, North Holland Publishing Company, 1981 [Google Scholar]
  3. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain – gradient plasticity: A few critical issues, Scr. Mater. 48(2), 119 (2003) [CrossRef] [Google Scholar]
  4. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527, 2738 (2010) [CrossRef] [Google Scholar]
  5. C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, Statistical analysis of dislocations and dislocation boundaries from EBSD data, Ultramicroscopy 179, 63 (2017) [CrossRef] [Google Scholar]
  6. I.L. Dillamore, C.J.E. Smith, T.W. Watson, Oriented nucleation in the formation of annealing textures in iron, Met. Sci. J. 1, 49 (1967) [Google Scholar]
  7. W.T. Read, W. Schockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78, 275 (1950) [CrossRef] [Google Scholar]
  8. A. Samet-Meziou, A.L. Etter, T. Baudin, R. Penelle, Relation between the deformation substructure after rolling or tension and the recrystallization mechanisms of an IF steel, Mater. Sci. Eng. A 473(1–2), 342 (2008) [CrossRef] [Google Scholar]
  9. B.S. El-Dasher, B.L. Adams, A.D. Rollett, Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycristals, Scr. Mat. 48, 141 (2003) [CrossRef] [Google Scholar]
  10. D.P. Field, P.B. Trivedi, S.I. Wright, M. Kumar, Analysis of local orientation gradients in deformed single crystals, Ultramicroscopy 103, 33 (2005) [CrossRef] [Google Scholar]
  11. W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58, 994 (2008) [CrossRef] [Google Scholar]
  12. B. Beausir, J.-J. Fundenberger, Analysis tools for electron and X-ray diffraction, ATEX-software, Université de Lorraine-Metz, 2017, available at www.atex-software.eu. [Google Scholar]
  13. H.J. Bunge, Texture analysis in materials science-mathematical methods, Butterworths, London, 1982 [Google Scholar]
  14. D.P. Field, C.C. Merriman, N. Allain-Bonasso, F. Wagner, Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD, Model. Simul. Mater. Sci. Eng. 20, 024007 (2012) [CrossRef] [Google Scholar]
  15. K. Pawlik, J. Pospiech, K. Lucke, The ODF approximation from pole figures with the aid of the ADC method, Textures Microstruct. 14–18, 25 (1991) [CrossRef] [Google Scholar]
  16. J. Chevy, C. Fressengeas, M. Lebyodkin, V. Taupin, P. Bastie, P. Duval, Characterizing short-range vs. long-range spatial correlations in dislocation distributions, Acta Mater. 58, 1837 (2010) [CrossRef] [Google Scholar]
  17. B. Beausir, C. Fressengeas, N.P. Gurao, L.S. Toth, S. Suwas, Spatial correlation in grain misorientation distribution, Acta Mater. 57, 5382 (2009) [CrossRef] [Google Scholar]
  18. P.J. Konijnenberg, S. Zaefferer, S.D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99, 402 (2015) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.