Open Access
Issue
Matériaux & Techniques
Volume 106, Number 6, 2018
Article Number 604
Number of page(s) 14
Section Métaux et alliages / Metals and alloys
DOI https://doi.org/10.1051/mattech/2018058
Published online 15 February 2019
  1. J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1, 153 (1953) [CrossRef] [Google Scholar]
  2. E. Kröner, Continuum theory of defects, in: Balian R. et al. (Eds.), Physics of defects, Les Houches, Session XXXV, 1980, North Holland Publishing Company, 1981 [Google Scholar]
  3. L.P. Kubin, A. Mortensen, Geometrically necessary dislocations and strain – gradient plasticity: A few critical issues, Scr. Mater. 48(2), 119 (2003) [CrossRef] [Google Scholar]
  4. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A 527, 2738 (2010) [CrossRef] [Google Scholar]
  5. C. Moussa, M. Bernacki, R. Besnard, N. Bozzolo, Statistical analysis of dislocations and dislocation boundaries from EBSD data, Ultramicroscopy 179, 63 (2017) [CrossRef] [Google Scholar]
  6. I.L. Dillamore, C.J.E. Smith, T.W. Watson, Oriented nucleation in the formation of annealing textures in iron, Met. Sci. J. 1, 49 (1967) [CrossRef] [Google Scholar]
  7. W.T. Read, W. Schockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78, 275 (1950) [CrossRef] [Google Scholar]
  8. A. Samet-Meziou, A.L. Etter, T. Baudin, R. Penelle, Relation between the deformation substructure after rolling or tension and the recrystallization mechanisms of an IF steel, Mater. Sci. Eng. A 473(1–2), 342 (2008) [CrossRef] [Google Scholar]
  9. B.S. El-Dasher, B.L. Adams, A.D. Rollett, Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycristals, Scr. Mat. 48, 141 (2003) [CrossRef] [Google Scholar]
  10. D.P. Field, P.B. Trivedi, S.I. Wright, M. Kumar, Analysis of local orientation gradients in deformed single crystals, Ultramicroscopy 103, 33 (2005) [CrossRef] [Google Scholar]
  11. W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scr. Mater. 58, 994 (2008) [CrossRef] [Google Scholar]
  12. B. Beausir, J.-J. Fundenberger, Analysis tools for electron and X-ray diffraction, ATEX-software, Université de Lorraine-Metz, 2017, available at www.atex-software.eu. [Google Scholar]
  13. H.J. Bunge, Texture analysis in materials science-mathematical methods, Butterworths, London, 1982 [Google Scholar]
  14. D.P. Field, C.C. Merriman, N. Allain-Bonasso, F. Wagner, Quantification of dislocation structure heterogeneity in deformed polycrystals by EBSD, Model. Simul. Mater. Sci. Eng. 20, 024007 (2012) [CrossRef] [Google Scholar]
  15. K. Pawlik, J. Pospiech, K. Lucke, The ODF approximation from pole figures with the aid of the ADC method, Textures Microstruct. 14–18, 25 (1991) [CrossRef] [Google Scholar]
  16. J. Chevy, C. Fressengeas, M. Lebyodkin, V. Taupin, P. Bastie, P. Duval, Characterizing short-range vs. long-range spatial correlations in dislocation distributions, Acta Mater. 58, 1837 (2010) [CrossRef] [Google Scholar]
  17. B. Beausir, C. Fressengeas, N.P. Gurao, L.S. Toth, S. Suwas, Spatial correlation in grain misorientation distribution, Acta Mater. 57, 5382 (2009) [CrossRef] [Google Scholar]
  18. P.J. Konijnenberg, S. Zaefferer, S.D. Raabe, Assessment of geometrically necessary dislocation levels derived by 3D EBSD, Acta Mater. 99, 402 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.