Issue
Matériaux & Techniques
Volume 110, Number 6, 2022
Special Issue on ‘Recent advances of the French research on the biodeterioration of materials’, edited by Françoise Feugeas, Bernard Tribollet, Christine Lors, Marc Jeannin and Hervé Gueuné
Article Number 606
Number of page(s) 19
Section Materials from biological origin
DOI https://doi.org/10.1051/mattech/2023004
Published online 01 May 2023
  1. Z. Han, J. Wang, H. Zhao, et al., Mechanism of biomineralization induced by Bacillus subtilis J2 and characteristics of the biominerals, Minerals 9(4), 218 (2019), https://doi.org/10.3390/min9040218 [Google Scholar]
  2. M.J. Castro-Alonso, L.E. Montañez-Hernandez, M.A. Sanchez-Muñoz, et al., Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts, Front. Mater. 6, 126 (2019), https://doi.org/10.3389/fmats.2019.00126 [CrossRef] [Google Scholar]
  3. W.A. Hamilton, Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis, Biofouling 19, 65–76 (2003), https://doi.org/10.1080/0892701021000041078 [CrossRef] [Google Scholar]
  4. S. Weiner, An overview of biomineralization processes and the problem of the vital effect, Rev. Miner. Geochem. 54(1), 1–29 (2003), https://doi.org/10.2113/0540001 [CrossRef] [Google Scholar]
  5. G. Nehrke, Calcite precipitation from aqueous solution: transformation from vaterite and role of solution stoichiometry, [s.n.], S.l., 2007 [Google Scholar]
  6. J.W. Morse, R.S. Arvidson, A. Lüttge, Calcium carbonate formation and dissolution, Chem. Rev. 107(2), 342–381 (2007), https://doi.org/10.1021/cr050358j [CrossRef] [Google Scholar]
  7. P.S.J.V. Cappellen, P.R. van der Linde, G. Nehrke, Calcite precipitation from aqueous solution: transformation from vaterite and role of solution stoichiometry, 1998 [En ligne], Disponible sur : https://www.narcis.nl/research/RecordID/OND1303813 (consulté le 9/6/2021) [Google Scholar]
  8. W. Stumm, J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters, John Wiley & Sons, 2012 [Google Scholar]
  9. I. Cojan, M. Renard, Sédimentologie : licence 3, Master, Capes, agrégation, 2021 [Google Scholar]
  10. H.A. Lowenstam, S. Weiner, On biomineralization, Oxford University Press, Oxford, New York, 1989 [CrossRef] [Google Scholar]
  11. G. Falini, S. Albeck, S. Weiner, et al., Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science 271(5245), 67–69 (1996), https://doi.org/10.1126/science.271.5245.67 [CrossRef] [Google Scholar]
  12. G. Falini, S. Fermani, S. Goffredo, Coral biomineralization: a focus on intra-skeletal organic matrix and calcification, Semin. Cell Dev. Biol. 46, 17–26 (2015), https://doi.org/10.1016/j.semcdb.2015.09.005 [CrossRef] [Google Scholar]
  13. M. Rousseau, E. Lopez, A. Couté, et al., Sheet nacre growth mechanism: a Voronoi model, J. Struct. Biol. 149(2), 149–157 (2005), https://doi.org/10.1016/j.jsb.2004.09.005 [CrossRef] [Google Scholar]
  14. S. Tambutté, M. Holcomb, C. Ferrier-Pagès, et al., Coral biomineralization: from the gene to the environment, J. Exp. Mar. Biol. Ecol. 408(1), 58–78 (2011), https://doi.org/10.1016/j.jembe.2011.07.026 [CrossRef] [Google Scholar]
  15. K.L. Barott, A.A. Venn, A.B. Thies, et al., Regulation of coral calcification by the acid-base sensing enzyme soluble adenylyl cyclase, Biochem. Biophys. Res. Commun. 525(3), 576–580 (2020), https://doi.org/10.1016/j.bbrc.2020.02.115 [CrossRef] [Google Scholar]
  16. M.E. Marsh, Regulation of CaCO3 formation in coccolithophores, Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 136(4), 743–754 (2003), https://doi.org/10.1016/S1096-4959(03)00180-5 [CrossRef] [Google Scholar]
  17. Y.-W. Liu, S.D. Rokitta, B. Rost, et al., Constraints on coccolithophores under ocean acidification obtained from boron and carbon geochemical approaches, Geochim. Cosmochim. Acta 315, 317–332 (2021), https://doi.org/10.1016/j.gca.2021.09.025 [CrossRef] [Google Scholar]
  18. C. Dupraz, R.P. Reid, O. Braissant, et al., Processes of carbonate precipitation in modern microbial mats, Earth-Sci. Rev. 96(3), 141–162 (2009), https://doi.org/10.1016/j.earscirev.2008.10.005 [CrossRef] [Google Scholar]
  19. S. Castanier, G. Le Métayer-Levrel, J.-P. Perthuisot, Ca-carbonates precipitation and limestone genesis - The microbiogeologist point of view, Sediment. Geol. 126, 9–23 (1999), https://doi.org/10.1016/S0037-0738(99)00028-7 [CrossRef] [Google Scholar]
  20. S. Mondal, A. Dey Ghosh, Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete, Constr. Build. Mater. 225, 67–75 (2019), https://doi.org/10.1016/j.conbuildmat.2019.07.122 [CrossRef] [Google Scholar]
  21. M. Seifan, A. Berenjian, Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world, Appl. Microbiol. Biotechnol. 103(12), 4693–4708 (2019), https://doi.org/10.1007/s00253-019-09861-5 [CrossRef] [Google Scholar]
  22. M. Nodehi, T. Ozbakkaloglu, A. Gholampour, A systematic review of bacteria-based self-healing concrete: biomineralization, mechanical, and durability properties, J. Build. Eng. 49, 104038 (2022), https://doi.org/10.1016/j.jobe.2022.104038 [CrossRef] [Google Scholar]
  23. L. Cheng, R. Cord-Ruwisch, In situ soil cementation with ureolytic bacteria by surface percolation, Ecol. Eng. 42, 64–72 (2012), https://doi.org/10.1016/j.ecoleng.2012.01.013 [CrossRef] [Google Scholar]
  24. N.K. Dhami, W.R. Alsubhi, E. Watkin, et al., Bacterial community dynamics and biocement formation during stimulation and augmentation: implications for soil consolidation, Front. Microbiol. 8, 1267 (2017), https://doi.org/10.3389/fmicb.2017.01267 [CrossRef] [Google Scholar]
  25. B. Krajewska, Urease-aided calcium carbonate mineralization for engineering applications: a review, J. Adv. Res. 13, 59–67 (2018), https://doi.org/10.1016/j.jare.2017.10.009 [CrossRef] [Google Scholar]
  26. A. Esnault-Filet, I. Gutjahr, L. Sapin, et al., BIOCALCIS®, le renforcement des sols par cimentation biologique, Sols & Fondations, 100–105 (2017), [En ligne], Disponible sur : https://api.soletanche-bachy.com/wp-content/uploads/2019/05/Travaux-933-Biocalcis.pdf [Google Scholar]
  27. C. Lors, J. Ducasse-Lapeyrusse, R. Gagné, et al., Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars, Constr. Build. Mater. 141, 461–469 (2017), https://doi.org/10.1016/j.conbuildmat.2017.03.026 [CrossRef] [Google Scholar]
  28. T. Zhu, C. Paulo, M.L. Merroun, et al., Potential application of biomineralization by synechococcus PCC8806 for concrete restoration, Ecol. Eng. 82, 459–468 (2015), https://doi.org/10.1016/j.ecoleng.2015.05.017 [CrossRef] [Google Scholar]
  29. P. Anbu, C.-H. Kang, Y.-J. Shin, et al., Formations of calcium carbonate minerals by bacteria and its multiple applications, SpringerPlus 5(1), 250 (2016), https://doi.org/10.1186/s40064-016-1869-2 [CrossRef] [Google Scholar]
  30. M. Imran, S. Kimura, K. Nakashima, et al., Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method, Appl. Sci. 9(20), 4462 (2019), https://doi.org/10.3390/app9204462 [Google Scholar]
  31. J. Vincent, R. Sabot, I. Lanneluc, et al., Biomineralization of calcium carbonate by marine bacterial strains isolated from calcareous deposits, Matériaux & Techniques 108(3), 302 (2020), https://doi.org/10.1051/mattech/2020027 [Google Scholar]
  32. T. Danjo, S. Kawasaki, Characteristics of beachrocks: a review, Geotech. Geol. Eng. 32(2), 215–246 (2014), https://doi.org/10.1007/s10706-013-9712-9 [CrossRef] [Google Scholar]
  33. X.-Y. Zhang, Y. Li, F.-L. Sun, et al., Insights into microbially mediated cementation in modern beachrock in the Xisha Islands, South China Sea, Palaeogeogr. Palaeoclimatol. Palaeoecol. 592, 110904 (2022), https://doi.org/10.1016/j.palaeo.2022.110904 [CrossRef] [Google Scholar]
  34. C. Dupraz, P.T. Visscher, Microbial lithification in marine stromatolites and hypersaline mats, Trends Microbiol. 13(9), 429–438 (2005), https://doi.org/10.1016/j.tim.2005.07.008 [CrossRef] [Google Scholar]
  35. U. Neumeier, Le rôle de l’activité microbienne dans la cimentation précoce des beachrocks (sédiments intertidaux), Terre & Environnement 12, 1–183 (1998) [Google Scholar]
  36. M. Merz-Preiß, Calcification in Cyanobacteria, in: R.E. Riding, S.M. Awramik (Éds.), Microbial sediments, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 50–56, https://doi.org/10.1007/978-3-662-04036-2_7 [CrossRef] [Google Scholar]
  37. L.J. Stal, Cyanobacterial mats and Stromatolites, in: B.A. Whitton (Éd.), Ecology of Cyanobacteria II, Springer Netherlands, Dordrecht, 2012, pp. 65–125, https://doi.org/10.1007/978-94-007-3855-3_4 [CrossRef] [Google Scholar]
  38. T.A. McConnaughey, J.F. Whelan, Calcification generates protons for nutrient and bicarbonate uptake, Earth-Sci. Rev. 42(1), 95–117 (1997), https://doi.org/10.1016/S0012-8252(96)00036-0 [CrossRef] [Google Scholar]
  39. T. Zhu, M. Dittrich, Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review, Front. Bioeng. Biotechnol. 4, (2016), https://doi.org/10.3389/fbioe.2016.00004 [Google Scholar]
  40. N. Cam, T. Georgelin, M. Jaber, et al., In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: what do we learn about intracellular calcification by cyanobacteria?, Geochim. Cosmochim. Acta 161, 36–49 (2015), https://doi.org/10.1016/j.gca.2015.04.003 [CrossRef] [Google Scholar]
  41. K. Benzerara, F. Skouri-Panet, J. Li, et al., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria, Proc. Nat. Acad. Sci. 111(30), 10933–10938 (2014), https://doi.org/10.1073/pnas.1403510111 [CrossRef] [Google Scholar]
  42. E. Couradeau, K. Benzerara, E. Gerard, et al., An early-branching microbialite Cyanobacterium forms intracellular carbonates, Science 336(6080), 459–462 (2012), https://doi.org/10.1126/science.1216171 [CrossRef] [Google Scholar]
  43. I.M. Head, N.D. Gray, H.-D. Babenzien, et al., Uncultured giant sulfur bacteria of the genus Achromatium, FEMS Microbiol. Ecol. 33(3), 171–180 (2000), https://doi.org/10.1111/j.1574-6941.2000.tb00739.x [CrossRef] [Google Scholar]
  44. V. Achal, A. Mukherjee, D. Kumari, et al., Biomineralization for sustainable construction – A review of processes and applications, Earth-Sci. Rev. 148, 1–17 (2015), https://doi.org/10.1016/j.earscirev.2015.05.008 [CrossRef] [Google Scholar]
  45. I.A. Bundeleva, L.S. Shirokova, P. Bénézeth, et al., Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions, J. Coll. Interface Sci. 360(1), 100–109 (2011), https://doi.org/10.1016/j.jcis.2011.04.033 [CrossRef] [Google Scholar]
  46. K. Van Tittelboom, N. De Belie, W. De Muynck, et al., Use of bacteria to repair cracks in concrete, Cem. Concr. Res. 40(1), 157–166 (2010), https://doi.org/10.1016/j.cemconres.2009.08.025 [CrossRef] [Google Scholar]
  47. G. Fu, S. Valiyaveettil, B. Wopenka, et al., CaCO3 Biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology, Biomacromolecules 6(3), 1289–1298 (2005), https://doi.org/10.1021/bm049314v [CrossRef] [Google Scholar]
  48. S. Ghosh, M. Biswas, B.D. Chattopadhyay, et al., Microbial activity on the microstructure of bacteria modified mortar, Cem. Concr. Compos. 31(2), 93–98 (2009), https://doi.org/10.1016/j.cemconcomp.2009.01.001 [CrossRef] [Google Scholar]
  49. K. Sarayu, N.R. Iyer, A.R. Murthy, Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials – a review, Appl. Biochem. Biotechnol. 172(5), 2308–2323 (2014), https://doi.org/10.1007/s12010-013-0686-0 [CrossRef] [Google Scholar]
  50. C. Jansson, T. Northen, Calcifying cyanobacteria – The potential of biomineralization for carbon capture and storage, Curr. Opin. Biotechnol. 21(3), 365–371 (2010), https://doi.org/10.1016/j.copbio.2010.03.017 [CrossRef] [Google Scholar]
  51. C. Zhang, J. Lv, F. Li, et al., Nucleation and growth of mg-calcite spherulites induced by the bacterium Curvibacter lanceolatus strain HJ-1, Microsc. Microanal. 23(6), 1189–1196 (2017), https://doi.org/10.1017/S1431927617012715 [CrossRef] [Google Scholar]
  52. A. Rusznyák, D.M. Akob, S. Nietzsche, et al., Calcite biomineralization by bacterial isolates from the recently discovered pristine karstic herrenberg cave, Appl. Environ. Microbiol. 78(4), 1157–1167 (2012), https://doi.org/10.1128/AEM06568-11 [CrossRef] [Google Scholar]
  53. K.A. Gebru, T.G. Kidanemariam, H.K. Gebretinsae, Bio-cement production using microbially induced calcite precipitation (MICP) method: a review, Chem. Eng. Sci. 238, 116610 (2021), https://doi.org/10.1016/j.ces.2021.116610 [CrossRef] [Google Scholar]
  54. M. Obst, J.J. Dynes, J.R. Lawrence, et al., Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process, Geochim. Cosmochim. Acta 73(14), 4180–4198 (2009), https://doi.org/10.1016/j.gca.2009.04.013 [CrossRef] [Google Scholar]
  55. N. Nassif, N. Gehrke, N. Pinna, et al., Synthesis of stable aragonite superstructures by a biomimetic crystallization pathway, Angewandte Chemie (Int. ed. in English) 44, 6004–9 (2005), https://doi.org/10.1002/anie.200500081 [CrossRef] [Google Scholar]
  56. J. Pan, H. Zhao, M.E. Tucker, et al., Biomineralization of Monohydrocalcite induced by the Halophile Halomonas smyrnensis WMS-3, Minerals 9(10), 632 (2019), https://doi.org/10.3390/min9100632 [Google Scholar]
  57. V. Achal, X. Pan, N. Özyurt, Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation, Ecol. Eng. 37(4), 554–559 (2011), https://doi.org/10.1016/j.ecoleng.2010.11.009 [CrossRef] [Google Scholar]
  58. J. Tourney, B.T. Ngwenya, Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism, Chem. Geol. 262(3), 138–146 (2009), https://doi.org/10.1016/j.chemgeo.2009.01.006 [CrossRef] [Google Scholar]
  59. A. Xie, Y. Shen, X. Li, et al., The role of Mg2+ and Mg2+/amino acid in controlling polymorph and morphology of calcium carbonate crystal, Mater. Chem. Phys. 101(1), 87–92 (2007), https://doi.org/10.1016/j.matchemphys.2006.02.019 [CrossRef] [Google Scholar]
  60. H. Yan, Z. Han, H. Zhao, et al., The bio-precipitation of calcium and magnesium ions by free and immobilized Lysinibacillus fusiformis DB1-3 in the wastewater, J. Clean. Prod. 252, 119826 (2020), https://doi.org/10.1016/j.jclepro.2019.119826 [CrossRef] [Google Scholar]
  61. J. Vincent, B. Colin, I. Lanneluc, et al., New biocalcifying marine bacterial strains isolated from calcareous deposits and immediate surroundings, Microorganisms 10(1), 76 (2022), https://doi.org/10.3390/microorganisms10010076 [Google Scholar]
  62. C. Buczynski, H.S. Chafetz, Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy, J. Sediment. Res. 61, 226–233 (1991), https://doi.org/10.1306/D42676DB-2B26-11D7-8648000102C1865D [CrossRef] [Google Scholar]
  63. M. Sánchez-Román, J.A. McKenzie, A. de Luca Rebello Wagener, et al., Presence of sulfate does not inhibit low-temperature dolomite precipitation, Earth Planet. Sci. Lett. 285(1-2), 131–139 (2009), https://doi.org/10.1016/j.epsl.2009.06.003 [CrossRef] [Google Scholar]
  64. F. Hammes, W. Verstraete, Key roles of pH and calcium metabolism in microbial carbonate precipitation, Rev. Environ. Sci. Biotechnol. 1(1), 3–7 (2002), https://doi.org/10.1023/A:1015135629155 [CrossRef] [Google Scholar]
  65. V. Achal, A. Mukherjee, P.C. Basu, et al., Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii, J. Ind. Microbiol. Biotechnol. 36(3), 433–438 (2009), https://doi.org/10.1007/s10295-008-0514-7 [CrossRef] [Google Scholar]
  66. V. Achal, A. Mukherjee, M.S. Reddy, Original research: biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source, Ind. Biotechnol. 6(3), 170–174 (2010), https://doi.org/10.1089/ind.2010.6.170 [CrossRef] [Google Scholar]
  67. J.Y. Wang, H. Soens, W. Verstraete, et al., Self-healing concrete by use of microencapsulated bacterial spores, Cem. Concr. Res. 56, 139–152 (2014), https://doi.org/10.1016/j.cemconres.2013.11.009 [CrossRef] [Google Scholar]
  68. C.M. Solomon, J.L. Collier, G.M. Berg, et al., Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review, Aquat. Microb. Ecol. 59(1), 67–88 (2010), https://doi.org/10.3354/ame01390 [CrossRef] [Google Scholar]
  69. K.A. Mace, N. Kubilay, R.A. Duce, Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: an association with atmospheric dust, J. Geophys. Res.: Atmos. 108(D10), (2003), https://doi.org/10.1029/2002JD002997 [Google Scholar]
  70. J. Dick, W. De Windt, B. De Graef, et al., Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation 17(4), 357–367 (2006), https://doi.org/10.1007/s10532-005-9006-x [CrossRef] [Google Scholar]
  71. J.T. Dejong, K. Soga, E. Kavazanjian, et al., Biogeochemical processes and geotechnical applications: progress, opportunities and challenges, Géotechnique 63(4), 287–301 (2013), https://doi.org/10.1680/geot.SIP13.P.017 [CrossRef] [Google Scholar]
  72. T. Gibson, Aninvestigation of the Bacillus pasteurii group, J. Bacteriol. 29(5), 491–502 (1935), [En ligne], Disponible sur : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC543616/ (consulté le 12/1/2022) [CrossRef] [Google Scholar]
  73. J. Henze, D.G. Randall, Microbial induced calcium carbonate precipitation at elevated pH values (> 11) using Sporosarcina pasteurii, J. Environ. Chem. Eng. 6(4), 5008–5013 (2018), https://doi.org/10.1016/j.jece.2018.07.046 [CrossRef] [Google Scholar]
  74. M. Sarmast, M.H. Farpoor, M. Sarcheshmehpoor, et al., Micromorphological and biocalcification effects of Sporosarcina pasteurii and Sporosarcina ureae in sandy soil columns, J. Agric. Sci. Technol. 16(3), 681–693 (2014), [En ligne], Disponible sur : https://iranjournals.nlai.ir/handle/123456789/589722 (consulté le 13/1/2022) [Google Scholar]
  75. B.M. Mortensen, M.J. Haber, J.T. DeJong, et al., Effects of environmental factors on microbial induced calcium carbonate precipitation, J. Appl. Microbiol. 111(2), 338–349 (2011), https://doi.org/10.1111/j.1365-2672.2011.05065.x [CrossRef] [Google Scholar]
  76. T. Danjo, S. Kawasaki, Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by Beachrock formation mechanism, Mater. Trans. 57(3), 428–437 (2016), https://doi.org/10.2320/matertrans.M-M2015842 [CrossRef] [Google Scholar]
  77. L.R. Daryono, K. Nakashima, S. Kawasaki, et al., Sediment characteristics of Beachrock: a baseline investigation based on microbial induced carbonate precipitation at Krakal-Sadranan Beach, Yogyakarta, Indonesia, Appl. Sci. 10(2), 520 (2020), https://doi.org/10.3390/app10020520 [Google Scholar]
  78. K. Kappaun, A.R. Piovesan, C.R. Carlini, et al., Ureases: historical aspects, catalytic, and non-catalytic properties – A review, J. Adv. Res. 13, 3–17 (2018), https://doi.org/10.1016/j.jare.2018.05.010 [CrossRef] [Google Scholar]
  79. B. Krajewska, Ureases I. Functional, catalytic and kinetic properties: a review, J. Mol. Catal. B: Enzym. 59(1), 9–21 (2009), https://doi.org/10.1016/j.molcatb.2009.01.003 [CrossRef] [Google Scholar]
  80. S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO3, Soil Biol. Biochem. 31, 1563–1571 (1999), https://doi.org/10.1016/S0038-0717(99)00082-6 [CrossRef] [Google Scholar]
  81. H.L.T. Mobley, M.D. Island, R.P. Hausinger, Molecular biology of microbial ureases, Microbiol. Rev. 59(3), 451–480 (1995), https://doi.org/10.1128/mmbr.59.3.451-480.1995 [CrossRef] [Google Scholar]
  82. J.N. Priya, M.K. Nan, Effect of carbonic anhydrase and urease on bacterial calcium carbonate precipitation, Int. J. Pharm. Bio. Sci. 8(3), (2017), https://doi.org/10.22376/ijpbs.2017.8.3.b609-614 [CrossRef] [Google Scholar]
  83. K.S. Smith, C. Jakubzick, T.S. Whittam, et al., Carbonic anhydrase is an ancient enzyme widespread in prokaryotes, Proc. Nat. Acad. Sci. USA 96(26), 15184–15189 (1999), https://doi.org/10.1073/pnas.96.26.15184 [CrossRef] [Google Scholar]
  84. R. Riding, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition, Geobiology 4(4), 299–316 (2006), https://doi.org/10.1111/j.1472-4669.2006.00087.x [CrossRef] [Google Scholar]
  85. N. Kamennaya, C. Ajo-Franklin, T. Northen, et al., Cyanobacteria as biocatalysts for carbonate mineralization, Minerals 2(4), 338–364 (2012), https://doi.org/10.3390/min2040338 [CrossRef] [Google Scholar]
  86. H. Xu, X. Peng, S. Bai, et al., Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments, Biogeosciences 16(4), 949–960 (2019), https://doi.org/10.5194/bg-16-949-2019 [CrossRef] [Google Scholar]
  87. I.M. Power, A.L. Harrison, G.M. Dipple, et al., Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation, Int. J. Greenhouse Gas Contr. 16, 145–155 (2013), https://doi.org/10.1016/j.ijggc.2013.03.011 [CrossRef] [Google Scholar]
  88. S.S.W. Effendi, I.-S. Ng, The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: a critical review, Process Biochem. (2019), https://doi.org/10.1016/j.procbio.2019.08.018 [Google Scholar]
  89. R. Ramanan, K. Kannan, S.D. Sivanesan, et al., Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii, World J. Microbiol. Biotechnol. 25(6), 981–987 (2009), https://doi.org/10.1007/s11274-009-9975-8 [CrossRef] [Google Scholar]
  90. I.M. Power, S.A. Wilson, J.M. Thom, et al., Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada, Geochem. Trans. 8(1), 13 (2007), https://doi.org/10.1186/1467-4866-8-13 [CrossRef] [Google Scholar]
  91. R.P. Reid, Stromatolites, in: D. Hopley (Éd.), Encyclopedia of modern coral reefs: structure, form and process, Springer Netherlands, Dordrecht, 2011, pp. 1045–1051, https://doi.org/10.1007/978-90-481-2639-2_152 [CrossRef] [Google Scholar]
  92. T. Zheng, C. Qian, Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase, Process Biochem. 91, 271–281 (2020), https://doi.org/10.1016/j.procbio.2019.12.018 [CrossRef] [Google Scholar]
  93. I. Park, R. Hausinger, Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter, Science 267(5201), 1156–1158 (1995), https://doi.org/10.1126/science.7855593 [CrossRef] [Google Scholar]
  94. D. Zhuang, H. Yan, M.E. Tucker, et al., Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: further insights into biotic and abiotic calcite, Chem. Geol. 500, 64–87 (2018), https://doi.org/10.1016/j.chemgeo.2018.09.018 [CrossRef] [Google Scholar]
  95. G. Ganendra, W. De Muynck, A. Ho, et al., Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP, Appl. Environ. Microbiol. 80(15), 4659–4667 (2014), https://doi.org/10.1128/AEM01349-14 [CrossRef] [Google Scholar]
  96. B. Perito, G. Mastromei, Molecular basis of bacterial calcium carbonate precipitation, in: W.E.G. Müller (Éd.), Molecular biomineralization, vol. 52, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 113–139, https://doi.org/10.1007/978-3-642-21230-7_5 [CrossRef] [Google Scholar]
  97. V.G. Paul, D.J. Wronkiewicz, M.R. Mormile, Impact of elevated CO2 concentrations on carbonate mineral precipitation ability of sulfate-reducing bacteria and implications for CO2 sequestration, Appl. Geochem. 78, 250–271 (2017), https://doi.org/10.1016/j.apgeochem.2017.01.010 [CrossRef] [Google Scholar]
  98. Y.Ç. Erşan, H. Verbruggen, I. De Graeve, et al., Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion, Cem. Concr. Res. 83, 19–30 (2016), https://doi.org/10.1016/j.cemconres.2016.01.009 [CrossRef] [Google Scholar]
  99. J. Holló, L. Czakó, Nitrate removal from drinking water in a fluidized-bed biological denitrification bioreactor, Acta Biotechnol. 7(5), 417–423 (1987), https://doi.org/10.1002/abio.370070509 [CrossRef] [Google Scholar]
  100. K.L. Gallagher, T.J. Kading, O. Braissant, et al., Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria, Geobiology 10(6), 518–530 (2012), https://doi.org/10.1111/j.1472-4669.2012.00342.x [CrossRef] [Google Scholar]
  101. Z. Guo, S. Pan, T. Liu, et al., Bacillus subtilis inhibits vibrio natriegens-induced corrosion via biomineralization in seawater, Front. Microbiol. 10, 1111 (2019), https://doi.org/10.3389/fmicb.2019.01111 [CrossRef] [Google Scholar]
  102. T. Liu, Z. Guo, Z. Zeng, et al., Marine bacteria provide lasting anticorrosion activity for steel via biofilm-induced mineralization, ACS Appl. Mater. Interf. 10(46), 40317–40327 (2018), https://doi.org/10.1021/acsami.8b14991 [CrossRef] [Google Scholar]
  103. N. Kip, S. Jansen, M.F.A. Leite, et al., Methanogens predominate in natural corrosion protective layers on metal sheet piles, Sci. Rep. 7(1), 11899 (2017), https://doi.org/10.1038/s41598-017-11244-7 [Google Scholar]
  104. N. Guo, Y. Wang, X. Hui, et al., Marine bacteria inhibit corrosion of steel via synergistic biomineralization, J. Mater. Sci. Technol. 66, 82–90 (2021), https://doi.org/10.1016/j.jmst.2020.03.089 [CrossRef] [Google Scholar]
  105. C.-H. Kang, S.-H. Han, Y. Shin, et al., Bioremediation of Cd by microbially induced calcite precipitation, Appl. Biochem. Biotechnol. 172(4), 1929–1937 (2014), https://doi.org/10.1007/s12010-013-0626-z [CrossRef] [Google Scholar]
  106. S. Qiao, G. Zeng, X. Wang, et al., Multiple heavy metals immobilization based on microbially induced carbonate precipitation by ureolytic bacteria and the precipitation patterns exploration, Chemosphere 274, 129661 (2021), https://doi.org/10.1016/j.chemosphere.2021.129661 [CrossRef] [Google Scholar]
  107. M. Wang, S. Wu, Y. Yang, et al., Microbial induced carbonate precipitation and its application for immobilization of heavy metals: a review, Res. Environ. Sci. 31, 206–214 (2018), https://doi.org/10.13198/j.issn.1001-6929.2017.03.55 [Google Scholar]
  108. X. Zhao, M. Wang, H. Wang, et al., Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria, Int. J. Environ. Res. Public Health 16(2), (2019), https://doi.org/10.3390/ijerph16020268 [Google Scholar]
  109. H. Bai, D. Liu, W. Zheng, et al., Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments, Int. Biodeterior. Biodegrad. 165, 105311 (2021), https://doi.org/10.1016/j.ibiod.2021.105311 [CrossRef] [Google Scholar]
  110. G. Cuaxinque-Flores, J.L. Aguirre-Noyola, G. Hernández-Flores, et al., Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: an in vitro study and application to sulfide-bearing tailings, Sci. Total Environ. 724, 138124 (2020), https://doi.org/10.1016/j.scitotenv.2020.138124 [CrossRef] [Google Scholar]
  111. L. Fang, Q. Niu, L. Cheng, et al., Ca-mediated alleviation of Cd2+ induced toxicity and improved Cd2+ biomineralization by Sporosarcina pasteurii, Sci. Total Environ. 787, 147627 (2021), https://doi.org/10.1016/j.scitotenv.2021.147627 [CrossRef] [Google Scholar]
  112. F. Cappitelli, E. Zanardini, G. Ranalli, et al., Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria, Appl. Environ. Microbiol. 72(5), 3733–3737 (2006), https://doi.org/10.1128/AEM.72.5.3733-3737.2006 [CrossRef] [Google Scholar]
  113. G. Ranalli, M. Chiavarini, V. Guidetti, et al., The use of microorganisms for the removal of sulphates on artistic stoneworks, Int. Biodeterior. Biodegrad. 40(2-4), 255–261 (1997), https://doi.org/10.1016/S0964-8305(97)00054-1 [CrossRef] [Google Scholar]
  114. S.A. Abo-El-Enein, A.H. Ali, F.N. Talkhan, et al., Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation, HBRC J. 8(3), 185–192 (2012), https://doi.org/10.1016/j.hbrcj.2013.02.001 [CrossRef] [Google Scholar]
  115. S.S. Bang, J.K. Galinat, V. Ramakrishnan, Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii, Enzym. Microb. Technol. 28(4-5), 404–409 (2001), https://doi.org/10.1016/s0141-0229(00)00348-3 [CrossRef] [Google Scholar]
  116. W. De Muynck, D. Debrouwer, N. De Belie, et al., Bacterial carbonate precipitation improves the durability of cementitious materials, Cem. Concr. Res. 38(7), 1005–1014 (2008), https://doi.org/10.1016/j.cemconres.2008.03.005 [CrossRef] [Google Scholar]
  117. W. De Muynck, S. Leuridan, D. Van Loo, et al., Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation, Appl. Environ. Microbiol. 77(19), 6808–6820 (2011), https://doi.org/10.1128/AEM00219-11 [CrossRef] [Google Scholar]
  118. V. Achal, A. Mukherjee, S. Goyal, et al., Corrosion prevention of reinforced concrete with microbial calcite precipitation, ACI Mater. J. 109, 157–164 (2012) [Google Scholar]
  119. B. Perito, M. Marvasi, C. Barabesi, et al., A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: biotechnological perspectives for monumental stone reinforcement, J. Cult. Herit. 15(4), 345–351 (2014), https://doi.org/10.1016/j.culher.2013.10.001 [CrossRef] [Google Scholar]
  120. I. Feurgard, C. Lors, R. Gagné, et al., Mise au point d’une suspension bactérienne épaissie pour l’exobiocicatrisation de matériaux cimentaires fissurés, Matériaux & Techniques 104(5), 505 (2016), https://doi.org/10.1051/mattech/2016031 [Google Scholar]
  121. C. Lors, D. Damidot, L. Petit, et al., Bioprecipitation of a calcium carbonate – Biofilm composite on the surface of concrete for the maintenance of nuclear reactor enclosures, Constr. Build. Mater. 237, 117618 (2020), https://doi.org/10.1016/j.conbuildmat.2019.117618 [CrossRef] [Google Scholar]
  122. J. Xu, W. Yao, Z. Jiang, Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials, J. Mater. Civil Eng. 26(5), 983–991 (2014), https://doi.org/10.1061/(ASCE)MT.1943-5533.0000906 [CrossRef] [Google Scholar]
  123. V. Wiktor, H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cem. Concr. Compos. 33(7), 763–770 (2011), https://doi.org/10.1016/j.cemconcomp.2011.03.012 [CrossRef] [Google Scholar]
  124. M.B.E. Khan, L. Shen, D. Dias-da-Costa, Self-healing behaviour of bio-concrete in submerged and tidal marine environments, Constr. Build. Mater. 277, 122332 (2021), https://doi.org/10.1016/j.conbuildmat.2021.122332 [CrossRef] [Google Scholar]
  125. H.M. Jonkers, A. Thijssen, G. Muyzer, et al., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecol. Eng. 36(2), 230–235 (2010), https://doi.org/10.1016/j.ecoleng.2008.12.036 [CrossRef] [Google Scholar]
  126. J. Zhang, Y. Liu, T. Feng, et al., Immobilizing bacteria in expanded perlite for the crack self-healing in concrete, Constr. Build. Mater. 148, 610–617 (2017), https://doi.org/10.1016/j.conbuildmat.2017.05.021 [CrossRef] [Google Scholar]
  127. D. Palin, V. Wiktor, H.M. Jonkers, A bacteria-based bead for possible self-healing marine concrete applications, Smart Mater. Struct. 25(8), 084008 (2016), https://doi.org/10.1088/0964-1726/25/8/084008 [CrossRef] [Google Scholar]
  128. C. Rodriguez-Navarro, M. Rodriguez-Gallego, K. Ben Chekroun, et al., Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization, AEM 69(4), 2182–2193 (2003), https://doi.org/10.1128/AEM.69.4.2182-2193.2003 [CrossRef] [Google Scholar]
  129. C. Jimenez-Lopez, C. Rodriguez-Navarro, G. Piñar, et al., Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone, Chemosphere 68(10), 1929–1936 (2007), https://doi.org/10.1016/j.chemosphere.2007.02.044 [CrossRef] [Google Scholar]
  130. M.A.G.D. Gutiérrez-Padilla, A. Bielefeldt, S. Ovtchinnikov, et al., Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes, Cem. Concr. Res. 40(2), 293–301 (2010), https://doi.org/10.1016/j.cemconres.2009.10.002 [CrossRef] [Google Scholar]
  131. Y.Ç. Erşan, F.B. Da Silva, N. Boon, et al., Screening of bacteria and concrete compatible protection materials, Constr. Build. Mater. 88, 196–203 (2015), https://doi.org/10.1016/j.conbuildmat.2015.04.027 [CrossRef] [Google Scholar]
  132. F.Z. Haouzi, A. Esnault-Filet, B. Courcelles, Optimisation of microbially induced calcite precipitation protocol against erosion, Environ. Geotech. (2021), https://doi.org/10.1680/jenge.19.00083 [Google Scholar]
  133. V.S. Whiffin, L.A. van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J. 24(5), 417–423 (2007), https://doi.org/10.1080/01490450701436505 [CrossRef] [Google Scholar]
  134. D. Bernardi, J.T. DeJong, B.M. Montoya, et al., Bio-bricks: biologically cemented sandstone bricks, Constr. Build. Mater. 55, 462–469 (2014), https://doi.org/10.1016/j.conbuildmat.2014.01.019 [CrossRef] [Google Scholar]
  135. A. Mousa, H. Nahazanan, Properties of biomineralization process in various types of soil and their limitations, Department of Civil Engineering Faculty of Engineering, University Putra Malaysia, Serdang, Selangor, Malaysia, IJEAT 9(1), 4261–4268 (2019), https://doi.org/10.35940/ijeat.A1756.109119 [CrossRef] [Google Scholar]
  136. A. Esnault Filet, I. Gutjahr, A. Garandet, et al., BOREAL, Bio-reinforcement of embankments by biocalcification, E3S Web Conf. 195, (2020), https://doi.org/10.1051/e3sconf/202019505001 [CrossRef] [EDP Sciences] [Google Scholar]
  137. Y. Al-Salloum, S. Hadi, H. Abbas, et al., Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation – A review, Constr. Build. Mater. 154, 857–876 (2017), https://doi.org/10.1016/j.conbuildmat.2017.07.203 [CrossRef] [Google Scholar]
  138. D. Mujah, M.A. Shahin, L. Cheng, State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization, Geomicrobiol. J. 34(6), 524–537 (2017), https://doi.org/10.1080/01490451.2016.1225866 [CrossRef] [Google Scholar]
  139. S.G. Choi, J. Chu, R.C. Brown, et al., Sustainable biocement production via microbially induced calcium carbonate precipitation: use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass, ACS Sustain. Chem. Eng. 5(8), 7449–7449 (2017), https://doi.org/10.1021/acssuschemeng.7b02137 [CrossRef] [Google Scholar]
  140. D.J. Bernardi, Biologically cemented sandstone bricks, University of California, Davis, 2012 [Google Scholar]
  141. D. Mujah, M.A. Shahin, L. Cheng, et al., Experimental and analytical study on geomechanical behavior of biocemented sand, Int. J. Geomech. 21(8), 04021126 (2021), https://doi.org/10.1061/(ASCE)GM.1943-5622.0002105 [CrossRef] [Google Scholar]
  142. L. Cheng, M.A. Shahin, D. Mujah, Influence of key environmental conditions on microbially induced cementation for soil stabilization, J. Geotech. Geoenviron. Eng. 143(1), 04016083 (2017), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586 [CrossRef] [Google Scholar]
  143. S.E. Lambert, D.G. Randall, Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine, Water Res. 160, 158–166 (2019), https://doi.org/10.1016/j.watres.2019.05.069 [CrossRef] [Google Scholar]
  144. R. Siddique, V. Nanda, Kunal, et al., Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust, Constr. Build. Mater. 106, 461–469 (2016), https://doi.org/10.1016/j.conbuildmat.2015.12.112 [CrossRef] [Google Scholar]
  145. A.F. Alshalif, J.M. Irwan, N. Othman, et al., Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete, MATEC Web Conf. 47, 01016 (2016), https://doi.org/10.1051/matecconf/20164701016 [CrossRef] [EDP Sciences] [Google Scholar]
  146. T. Tambunan, M.I. Juki, N. Othman, Mechanical properties of sulphate reduction bacteria on the durability of concrete in chloride condition, MATEC Web Conf. 258, 01024 (2019), https://doi.org/10.1051/matecconf/201925801024 [CrossRef] [EDP Sciences] [Google Scholar]
  147. C.M. Heveran, S.L. Williams, J. Qiu, et al., Biomineralization and successive regeneration of engineered living building materials, Matter 2(2), 481–494 (2020), https://doi.org/10.1016/j.matt.2019.11.016 [CrossRef] [Google Scholar]
  148. J. Creus, R. Sabot, P. Refait, Corrosion et protection des métaux en milieu marin, Ref: TIP140WEB – Bioprocédés (2013), https://www.techniques.ingenieur.fr/base-documentaire/42834210-ressources-marines-et-biotechnologies-bleues/download/cor620/corrosion-et-protection-des-metaux-en-milieu-marin.html (consulté le 18/4/2018) [Google Scholar]
  149. M. Urquidi-Macdonald, D.D. Macdonald, Modeling mechanisms in biocorrosion, Understanding biocorrosion, Woodhead Publishing, Oxford, 2014, pp. 243–277, https://doi.org/10.1533/9781782421252.2.243 [CrossRef] [Google Scholar]
  150. H. Venzlaff, D. Enning, J. Srinivasan, et al., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corros. Sci. 66, 88–96 (2013), https://doi.org/10.1016/j.corsci.2012.09.006 [CrossRef] [Google Scholar]
  151. S.N. Victoria, A. Sharma, R. Manivannan, Metal corrosion induced by microbial activity – Mechanism and control options, J. Indian Chem. Soc. 98(6), 100083 (2021), https://doi.org/10.1016/j.jics.2021.100083 [CrossRef] [Google Scholar]
  152. Z. Guo, X. Hui, Q. Zhao, et al., Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: inhibition of uniform corrosion and induction of pitting corrosion, Corros. Sci. 190, 109687 (2021), https://doi.org/10.1016/j.corsci.2021.109687 [CrossRef] [Google Scholar]
  153. J.A. Davis, C.C. Fuller, A.D. Cook, A model for trace metal sorption processes at the calcite surface: adsorption of Cd2+ and subsequent solid solution formation, Geochim. Cosmochim. Acta 51(6), 1477–1490 (1987), https://doi.org/10.1016/0016-7037(87)90330-9 [CrossRef] [Google Scholar]
  154. D. Kumari, X.-Y. Qian, X. Pan, et al., Microbially-induced carbonate precipitation for immobilization of toxic metals, Adv. Appl. Microbiol. (Elsevier) 94, 79–108 (2016), https://doi.org/10.1016/bs.aambs.2015.12.002 [CrossRef] [Google Scholar]
  155. F. Du, Z. Jin, W. She, et al., Chloride ions migration and induced reinforcement corrosion in concrete with cracks: a comparative study of current acceleration and natural marine exposure, Constr. Build. Mater. 263, 120099 (2020), https://doi.org/10.1016/j.conbuildmat.2020.120099 [CrossRef] [Google Scholar]
  156. A. Mocaer, E. Guillou, O. Chouinard, The social construction of coastal risks in two different cultural contexts: a study of marine erosion and flooding in France and Canada, Int. J. Disaster Risk Reduct. 66, 102635 (2021), https://doi.org/10.1016/j.ijdrr.2021.102635 [CrossRef] [Google Scholar]
  157. H. Mohr, S. Draper, D.J. White, et al., The influence of permeability on the erosion rate of fine-grained marine sediments, Coast. Eng. 140, 124–135 (2018), https://doi.org/10.1016/j.coastaleng.2018.04.013 [CrossRef] [Google Scholar]
  158. M.S. Ashraf, S.B. Azahar, N.Z. Yusof, Soil improvement using MICP and biopolymers: a review, IOP Conf. Ser.: Mater. Sci. Eng. 226, 012058 (2017), https://doi.org/10.1088/1757-899X/226/1/012058 [CrossRef] [Google Scholar]
  159. M.M. Rahman, R.N. Hora, I. Ahenkorah, et al., State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications, Sustainability 12(15), 6281 (2020), https://doi.org/10.3390/su12156281 [Google Scholar]
  160. H. Sakiyama, H. Matsubara, Physical, chemical, and biological investigation of an unconformity between limestone and sandstone in a coastal area: Iriomote Island case study, CATENA 171, 136–144 (2018), https://doi.org/10.1016/j.catena.2018.07.013 [CrossRef] [Google Scholar]
  161. K. Akamine, I. Kashiki, Corrosion protection of steel by calcareous electrodeposition in seawater (Part 2): Mechanism of growth, Zairyo to Kankyo, Corros. Eng. 51, 496–501 (2002), https://doi.org/10.3323/jcorr1991.51.496 [CrossRef] [Google Scholar]
  162. C. Carré, A. Zanibellato, M. Jeannin, et al., Electrochemical calcareous deposition in seawater. A review, Environ. Chem. Lett. 18(4), 1193–1208 (2020), https://doi.org/10.1007/s10311-020-01002-z [CrossRef] [Google Scholar]
  163. C. Rousseau, F. Baraud, L. Leleyter, et al., Calcareous deposit formed under cathodic protection in the presence of natural marine sediments: a 12 month experiment, Corros. Sci. 52(6), 2206–2218 (2010), https://doi.org/10.1016/j.corsci.2010.02.047 [CrossRef] [Google Scholar]
  164. C. Carré, A. Zanibellato, N. Achgare, et al., Electrochemical limestone synthesis in seawater binds metal grids and sediments for coastal protection, Environ. Chem. Lett. 18(5), 1685–1692 (2020), https://doi.org/10.1007/s10311-020-01019-4 [CrossRef] [Google Scholar]
  165. A. Zanibellato, Synthèse et études physico-chimiques d’un agglomérat calcomagnésien formé sur acier en milieu marin : un éco-matériau pour la protection du littoral, PhD thesis, Université de La Rochelle, 2016, [En ligne], Disponible sur : https://tel.archives-ouvertes.fr/tel-01661402/document (consulté le 13/3/2019). [Google Scholar]
  166. L. Oksri-Nelfia, P.-Y. Mahieux, O. Amiri, et al., Reuse of recycled crushed concrete fines as mineral addition in cementitious materials, Mater. Struct. 49(8), 3239–3251 (2016), https://doi.org/10.1617/s11527-015-0716-1 [CrossRef] [Google Scholar]
  167. B. Colin, J. Vincent, L. Koziorowszki, et al., Calcareous deposit formation under cathodic polarization and marine biocalcifying bacterial activity, Bioelectrochemistry 148, 108271 (2022), https://doi.org/10.1016/j.bioelechem.2022.108271 [CrossRef] [Google Scholar]
  168. J. Vincent, Biocalcification bactérienne couplée à la polarisation cathodique en milieu marin afin de consolider les ouvrages du littoral, PhD thesis, La Rochelle Université, 2022 [Google Scholar]
  169. N.K. Dhami, Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites, J. Microbiol. Biotechnol. 23(5), 707–714 (2013), https://doi.org/10.4014/jmb.1212.11087 [CrossRef] [Google Scholar]
  170. F.M. Helmi, H.R. Elmitwalli, S.M. Elnagdy, et al., Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis, Ecol. Eng. 90, 367–371 (2016), https://doi.org/10.1016/j.ecoleng.2016.01.044 [CrossRef] [Google Scholar]
  171. A. Chivas, J. Chappell, H. Polach, et al., Radiocarbon evidence for the timing and rate of Island development, beach-rock formation and phosphatization at Lady Elliot Island, Queensland, Australia, Mar. Geol. 69(3), 273–287 (1986), https://doi.org/10.1016/0025-3227(86)90043-5 [CrossRef] [Google Scholar]
  172. M.I. Vousdoukas, A.F. Velegrakis, T.A. Plomaritis, Beachrock occurrence, characteristics, formation mechanisms and impacts, Earth-Sci. Rev. 85(1), 23–46 (2007), https://doi.org/10.1016/j.earscirev.2007.07.002 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.