Open Access
Matériaux & Techniques
Volume 110, Number 1, 2022
Article Number 104
Number of page(s) 14
Section Matériaux adaptatifs et structures / Smart materials and structure
Published online 20 April 2022
  1. P.K. Mehta, Concrete. Structure, properties and materials, 1986 [Google Scholar]
  2. C. Durastanti, L. Moretti, Environmental impacts of cement production: A statistical analysis, Appl. Sci. 10(22), 8212 (2020) [CrossRef] [Google Scholar]
  3. K. Van Breugel, Is there a market for self-healing cementbased materials, in: Proceedings of the First International Conference on Self-Healing Materials, pp. 1–9, 2007 [Google Scholar]
  4. J.S. Leng, D. Winter, R.A. Barnes, et al., Structural health monitoring of concrete cylinders using protected fibre optic sensors, Smart Mater. Struct. 15(2), 302 (2006) [CrossRef] [Google Scholar]
  5. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College, London, 1998 [Google Scholar]
  6. J.-P. Salvetat, J.-M. Bonard, N.H. Thomson, et al., Mechanical properties of carbon nanotubes, Appl. Phys. A 69(3), 255–260 (1999) [CrossRef] [Google Scholar]
  7. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79(7), 1297 (1997) [CrossRef] [Google Scholar]
  8. B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes, in: Carbon nanotubes, pp. 287–327, 2001 [CrossRef] [Google Scholar]
  9. M.S. Dresselhaus, G. Dresselhaus, J.-C. Charlier, et al., Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. Royal Soc. London, Series A: Math. Phys. Eng. Sci. 362(1823), 2065–2098 (2004) [CrossRef] [Google Scholar]
  10. A. Peigney, C.H. Laurent, E. Flahaut, et al., Specific surface area of carbon nanotubes and bundle of carbon nanotubes, Carbon 39, 507–514 (2001) [CrossRef] [Google Scholar]
  11. M.D. Rossell, C. Kuebel, G. Ilari, et al., Impact of sonication pretreatment on carbon nanotubes: A transmission electron microscopy study, Carbon 61, 404–411 (2013) [CrossRef] [Google Scholar]
  12. A. Chaipanich, T. Nochaiya, W. Wongkeo et al., Compressive strength and microstructure of carbon nanotubes fly ash cement composites, Mater. Sci. Eng.: A 527(4-5), 1063–1067 (2010) [CrossRef] [Google Scholar]
  13. A. Cwirzen, K. Habermehl-Cwirzen, A.G. Nasibulin, et al., SEM/AFM studies of cementitious binder modified by MWCNT and nanosized Fe needles, Mater. Charact. 60(7), 735–740 (2009) [CrossRef] [Google Scholar]
  14. B. Wang, Y. Han, S. Liu, Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites, Constr. Build. Mater. 46, 8–12 (2013) [CrossRef] [Google Scholar]
  15. J. Bharj et al., Experimental study on compressive strength of cement-CNT composite paste, Ind. J. Pure Appl. Phys. (IJPAP) 52(1), 35–38 (2015) [Google Scholar]
  16. L. Coppola, E. Cadoni, D. Forni, et al., Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (grp) at high strain rates, Appl. Mech. Mater. [Trans. Tech. Publ.] 82, 190–195 (2011) [CrossRef] [Google Scholar]
  17. T. Manzur, N. Yazdani, Strength enhancement of cement mortar with carbon nanotubes: early results and potential, Transp. Res. Rec. 2142(1), 102–108 (2010) [CrossRef] [Google Scholar]
  18. M. Tanvir, Y. Nur, M. Emon, et al., Potential of carbon nanotube reinforced cement composites as concrete repaire material, J. Nanomater. 1–10 (2016) [Google Scholar]
  19. M.A. Ahmed, Y.A. Hassanean, K.A. Assaf, et al., Fascinating improvement in mechanical properties of cement mortar using multiwalled carbon nanotubes and ferrite nanoparticles, Glob. J. Res. Eng. (2015) [Google Scholar]
  20. N.M. Hassan, K.P. Fattah, A.K. Tamimi, Modelling mechanical behavior of cementitious material incorporating CNTs using design of experiments, Constr. Build. Mater. 154, 763–770 (2017) [CrossRef] [Google Scholar]
  21. R.K. Abu Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Constr. Build. Mater. 35, 647–655 (2012) [CrossRef] [Google Scholar]
  22. X. Song, S. Shang, D. Chen, et al., Multi-walled carbon nanotube reinforced mortar-aggregate interfacial properties, Constr. Build. Mater. 133, 57–64 (2017) [CrossRef] [Google Scholar]
  23. R.K. Abu Al-Rub, B.M. Tyson, A. Yazdanbakhsh, et al., Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers, J. Nanomech. Micromech. 2(1), 1–6 (2012) [CrossRef] [Google Scholar]
  24. M. del Carmen Camacho, O. Galao, F. Javier Baeza, et al., Mechanical properties and durability of CNT cement composites, Materials 7(3), 1640–1651 (2014) [CrossRef] [Google Scholar]
  25. A. Sobolkina, V. Mechtcherine, V. Khavrus, et al., Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix, Cement Concrete Compos. 34(10), 1104–1113 (2012) [CrossRef] [Google Scholar]
  26. A. D’Alessandro, M. Rallini, F. Ubertini, et al., Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for shm applications, Cement Concrete Compos. 65, 200–213 (2016) [CrossRef] [Google Scholar]
  27. B.S. Sindu, S. Sasmal, Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants, Constr. Build. Mater. 155, 389–399 (2017) [CrossRef] [Google Scholar]
  28. H. Shao, B. Chen, B. Li, et al., Influence of dispersants on the properties of CNTs reinforced cement-based materials, Constr. Build. Mater. 131, 186–194 (2017) [CrossRef] [Google Scholar]
  29. X. Chen, X.-Z. Tang, Y. Nan Liang, et al., Controlled thermal functionalization for dispersion enhancement of multi-wall carbon nanotube in organic solvents, J. Mater. Sci. 51(12), 5625–5634 (2016) [CrossRef] [Google Scholar]
  30. B. Bhushan, Springer handbook of nanotechnology, vol. 2, Springer, Berlin, Heidelberg, 2007 [Google Scholar]
  31. K.L. Klein, A. Vasilievich Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers, J. Appl. Phys. 103(6), 3 (2008) [Google Scholar]
  32. BS EN 197-1:2011, Cement, composition, specifications and conformity criteria for common cements, British Standard Institution (BSI), London, England, 2011 [Google Scholar]
  33. TS EN 196-1, Methods of testing cement: Part 1, 2002 [Google Scholar]
  34. Y.A. Kim, T. Hayashi, K. Osawa, et al., Annealing effect on disordered multi-wall carbon nanotubes, Chem. Phys. Lett. 380(3-4), 319–324 (2003) [CrossRef] [Google Scholar]
  35. R. Andrews, D. Jacques, D. Qian, et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon 39(11), 1681–1687 (2001) [CrossRef] [Google Scholar]
  36. Q.-M. Gong, Z. Li, Y. Wang, et al., The effect of high- temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes, Mater. Res. Bull. 42(3), 474–481 (2007) [CrossRef] [Google Scholar]
  37. NF EN 196-3+ a1, Methods of testing cement: Part 3, 2005 [Google Scholar]
  38. H. Layssi, P. Ghods, A.R. Alizadeh, et al., Electrical resistivity of concrete, Concr. Int. 37(5), 41–46 (2015) [Google Scholar]
  39. W. Dong, W. Li, Z. Tao, et al., Piezoresistive properties of cement based sensors: Review and perspective, Constr. Build. Mater. 203, 146–163 (2019) [CrossRef] [Google Scholar]
  40. T. Ferdiansyah, J.-P. Balayssac, A. Turatsinze, An experimental approach for characterisation of concrete damage using the wheatstone bridge circuit, Int. J. Civil Eng. 1–15 (2021) [Google Scholar]
  41. H. Yildirim, T. Ilica, O. Sengul, Effect of cement type on the resistance of concrete against chloride penetration, Constr. Build. Mater. 25(3), 1282–1288 (2011) [CrossRef] [Google Scholar]
  42. N. Hauptman, M. Klanjsek Gunde, M. Kunaver, et al., Influence of dispersing additives on the conductivity of carbon black pigment dispersion, J. Coat. Technol. Res. 8(5), 553–561 (2011) [CrossRef] [Google Scholar]
  43. F. Rajabipour, J. Weiss, Electrical conductivity of drying cement paste, Mater. Struct. 40(10), 1143–1160 (2007) [CrossRef] [Google Scholar]
  44. B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review, Measurement 59, 110–128 (2015) [CrossRef] [Google Scholar]
  45. H. Allam, F. Duplan, J.-P. Clerc, et al., About electrical resistivity variation during drying and improvement of the sensing behavior of carbon fiber-reinforced smart concrete, Constr. Build. Mater. 264, 120699 (2020) [CrossRef] [Google Scholar]
  46. S. Hu, Y. Xu, J. Wang, et al., Modification effects of carbon nanotube dispersion on the mechanical properties, pore structure, and microstructure of cement mortar, Materials 13(5), 1101 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.