Open Access
Numéro |
Matériaux & Techniques
Volume 110, Numéro 1, 2022
|
|
---|---|---|
Numéro d'article | 104 | |
Nombre de pages | 14 | |
Section | Matériaux adaptatifs et structures / Smart materials and structure | |
DOI | https://doi.org/10.1051/mattech/2022020 | |
Publié en ligne | 20 avril 2022 |
- P.K. Mehta, Concrete. Structure, properties and materials, 1986 [Google Scholar]
- C. Durastanti, L. Moretti, Environmental impacts of cement production: A statistical analysis, Appl. Sci. 10(22), 8212 (2020) [CrossRef] [Google Scholar]
- K. Van Breugel, Is there a market for self-healing cementbased materials, in: Proceedings of the First International Conference on Self-Healing Materials, pp. 1–9, 2007 [Google Scholar]
- J.S. Leng, D. Winter, R.A. Barnes, et al., Structural health monitoring of concrete cylinders using protected fibre optic sensors, Smart Mater. Struct. 15(2), 302 (2006) [CrossRef] [Google Scholar]
- R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College, London, 1998 [Google Scholar]
- J.-P. Salvetat, J.-M. Bonard, N.H. Thomson, et al., Mechanical properties of carbon nanotubes, Appl. Phys. A 69(3), 255–260 (1999) [CrossRef] [Google Scholar]
- J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79(7), 1297 (1997) [CrossRef] [Google Scholar]
- B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes, in: Carbon nanotubes, pp. 287–327, 2001 [CrossRef] [Google Scholar]
- M.S. Dresselhaus, G. Dresselhaus, J.-C. Charlier, et al., Electronic, thermal and mechanical properties of carbon nanotubes, Phil. Trans. Royal Soc. London, Series A: Math. Phys. Eng. Sci. 362(1823), 2065–2098 (2004) [CrossRef] [Google Scholar]
- A. Peigney, C.H. Laurent, E. Flahaut, et al., Specific surface area of carbon nanotubes and bundle of carbon nanotubes, Carbon 39, 507–514 (2001) [CrossRef] [Google Scholar]
- M.D. Rossell, C. Kuebel, G. Ilari, et al., Impact of sonication pretreatment on carbon nanotubes: A transmission electron microscopy study, Carbon 61, 404–411 (2013) [CrossRef] [Google Scholar]
- A. Chaipanich, T. Nochaiya, W. Wongkeo et al., Compressive strength and microstructure of carbon nanotubes fly ash cement composites, Mater. Sci. Eng.: A 527(4-5), 1063–1067 (2010) [CrossRef] [Google Scholar]
- A. Cwirzen, K. Habermehl-Cwirzen, A.G. Nasibulin, et al., SEM/AFM studies of cementitious binder modified by MWCNT and nanosized Fe needles, Mater. Charact. 60(7), 735–740 (2009) [CrossRef] [Google Scholar]
- B. Wang, Y. Han, S. Liu, Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites, Constr. Build. Mater. 46, 8–12 (2013) [CrossRef] [Google Scholar]
- J. Bharj et al., Experimental study on compressive strength of cement-CNT composite paste, Ind. J. Pure Appl. Phys. (IJPAP) 52(1), 35–38 (2015) [Google Scholar]
- L. Coppola, E. Cadoni, D. Forni, et al., Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (grp) at high strain rates, Appl. Mech. Mater. [Trans. Tech. Publ.] 82, 190–195 (2011) [CrossRef] [Google Scholar]
- T. Manzur, N. Yazdani, Strength enhancement of cement mortar with carbon nanotubes: early results and potential, Transp. Res. Rec. 2142(1), 102–108 (2010) [CrossRef] [Google Scholar]
- M. Tanvir, Y. Nur, M. Emon, et al., Potential of carbon nanotube reinforced cement composites as concrete repaire material, J. Nanomater. 1–10 (2016) [Google Scholar]
- M.A. Ahmed, Y.A. Hassanean, K.A. Assaf, et al., Fascinating improvement in mechanical properties of cement mortar using multiwalled carbon nanotubes and ferrite nanoparticles, Glob. J. Res. Eng. (2015) [Google Scholar]
- N.M. Hassan, K.P. Fattah, A.K. Tamimi, Modelling mechanical behavior of cementitious material incorporating CNTs using design of experiments, Constr. Build. Mater. 154, 763–770 (2017) [CrossRef] [Google Scholar]
- R.K. Abu Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Constr. Build. Mater. 35, 647–655 (2012) [CrossRef] [Google Scholar]
- X. Song, S. Shang, D. Chen, et al., Multi-walled carbon nanotube reinforced mortar-aggregate interfacial properties, Constr. Build. Mater. 133, 57–64 (2017) [CrossRef] [Google Scholar]
- R.K. Abu Al-Rub, B.M. Tyson, A. Yazdanbakhsh, et al., Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers, J. Nanomech. Micromech. 2(1), 1–6 (2012) [CrossRef] [Google Scholar]
- M. del Carmen Camacho, O. Galao, F. Javier Baeza, et al., Mechanical properties and durability of CNT cement composites, Materials 7(3), 1640–1651 (2014) [CrossRef] [Google Scholar]
- A. Sobolkina, V. Mechtcherine, V. Khavrus, et al., Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix, Cement Concrete Compos. 34(10), 1104–1113 (2012) [CrossRef] [Google Scholar]
- A. D’Alessandro, M. Rallini, F. Ubertini, et al., Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for shm applications, Cement Concrete Compos. 65, 200–213 (2016) [CrossRef] [Google Scholar]
- B.S. Sindu, S. Sasmal, Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants, Constr. Build. Mater. 155, 389–399 (2017) [CrossRef] [Google Scholar]
- H. Shao, B. Chen, B. Li, et al., Influence of dispersants on the properties of CNTs reinforced cement-based materials, Constr. Build. Mater. 131, 186–194 (2017) [CrossRef] [Google Scholar]
- X. Chen, X.-Z. Tang, Y. Nan Liang, et al., Controlled thermal functionalization for dispersion enhancement of multi-wall carbon nanotube in organic solvents, J. Mater. Sci. 51(12), 5625–5634 (2016) [CrossRef] [Google Scholar]
- B. Bhushan, Springer handbook of nanotechnology, vol. 2, Springer, Berlin, Heidelberg, 2007 [Google Scholar]
- K.L. Klein, A. Vasilievich Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers, J. Appl. Phys. 103(6), 3 (2008) [Google Scholar]
- BS EN 197-1:2011, Cement, composition, specifications and conformity criteria for common cements, British Standard Institution (BSI), London, England, 2011 [Google Scholar]
- TS EN 196-1, Methods of testing cement: Part 1, 2002 [Google Scholar]
- Y.A. Kim, T. Hayashi, K. Osawa, et al., Annealing effect on disordered multi-wall carbon nanotubes, Chem. Phys. Lett. 380(3-4), 319–324 (2003) [CrossRef] [Google Scholar]
- R. Andrews, D. Jacques, D. Qian, et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon 39(11), 1681–1687 (2001) [CrossRef] [Google Scholar]
- Q.-M. Gong, Z. Li, Y. Wang, et al., The effect of high- temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes, Mater. Res. Bull. 42(3), 474–481 (2007) [CrossRef] [Google Scholar]
- NF EN 196-3+ a1, Methods of testing cement: Part 3, 2005 [Google Scholar]
- H. Layssi, P. Ghods, A.R. Alizadeh, et al., Electrical resistivity of concrete, Concr. Int. 37(5), 41–46 (2015) [Google Scholar]
- W. Dong, W. Li, Z. Tao, et al., Piezoresistive properties of cement based sensors: Review and perspective, Constr. Build. Mater. 203, 146–163 (2019) [CrossRef] [Google Scholar]
- T. Ferdiansyah, J.-P. Balayssac, A. Turatsinze, An experimental approach for characterisation of concrete damage using the wheatstone bridge circuit, Int. J. Civil Eng. 1–15 (2021) [Google Scholar]
- H. Yildirim, T. Ilica, O. Sengul, Effect of cement type on the resistance of concrete against chloride penetration, Constr. Build. Mater. 25(3), 1282–1288 (2011) [CrossRef] [Google Scholar]
- N. Hauptman, M. Klanjsek Gunde, M. Kunaver, et al., Influence of dispersing additives on the conductivity of carbon black pigment dispersion, J. Coat. Technol. Res. 8(5), 553–561 (2011) [CrossRef] [Google Scholar]
- F. Rajabipour, J. Weiss, Electrical conductivity of drying cement paste, Mater. Struct. 40(10), 1143–1160 (2007) [CrossRef] [Google Scholar]
- B. Han, S. Ding, X. Yu, Intrinsic self-sensing concrete and structures: A review, Measurement 59, 110–128 (2015) [CrossRef] [Google Scholar]
- H. Allam, F. Duplan, J.-P. Clerc, et al., About electrical resistivity variation during drying and improvement of the sensing behavior of carbon fiber-reinforced smart concrete, Constr. Build. Mater. 264, 120699 (2020) [CrossRef] [Google Scholar]
- S. Hu, Y. Xu, J. Wang, et al., Modification effects of carbon nanotube dispersion on the mechanical properties, pore structure, and microstructure of cement mortar, Materials 13(5), 1101 (2020) [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.