Issue
Matériaux & Techniques
Volume 109, Number 5-6, 2021
Special Issue on ‘Materials and Society: the circular economy, design for circularity and industrial symbiosis’, edited by Jean-Pierre Birat, Gaël Fick, Nicolas Perry, Andrea Declich, Leiv Kolbensein, Dominique Millet and Thecle Alix
Article Number 506
Number of page(s) 12
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2022016
Published online 10 May 2022
  1. B.N. Altay, M. Bolduc, S.G. Cloutier, Sustainable advanced manufacturing of printed electronics: an environmental consideration, in: E.H. Yap, A.H.P. Tan (Eds.), Green energy and environment, IntechOpen, London, United Kingdom, 2020, https://doi.org/10.5772/intechopen.91979 [Google Scholar]
  2. E. Kunnari, J. Valkama, M. Keskinen, et al., Environmental evaluation of new technology: printed electronics case study, J. Cleaner Prod. 17(9), 791–799 (2009), https://doi.org/10.1016/j.jclepro.2008.11.020 [CrossRef] [Google Scholar]
  3. A. Canal Marques, J.-M. Cabrera, C. de Fraga Malfatti, Printed circuit boards: a review on the perspective of sustainability. J. Environ. Manag. 131, 298–306 (2013), https://doi.org/10.1016/j.jenvman.2013.10.003 [CrossRef] [Google Scholar]
  4. J. Ding, J. Liu, Q. Tian, et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution, Nanoscale Res. Lett. 11(1), 412 (2016), https://doi.org/10.1186/s11671-016-1640-1 [CrossRef] [Google Scholar]
  5. W. Wu, Inorganic nanomaterials for printed electronics: a review, Nanoscale 9(22), 7342–7372 (2017), https://doi.org/10.1039/C7NR01604B [CrossRef] [Google Scholar]
  6. A. Blayo, B. Pineaux, Printing processes and their potential for RFID printing, in: Joint sOc-EUSAI Conference, 2005, https://doi.org/10.1145/1107548.1107559 [Google Scholar]
  7. M. Berggreen, D. Nilsson, N.D. Robinson, Organic materials for printed electronics, Nat. Mater. 6(1), 3–5 (2007), https://doi.org/10.1038/nmat1817 [CrossRef] [Google Scholar]
  8. D. Corzo, G. Tostado-Blázquez, D. Baran, Flexible electronics: status, challenges and opportunities, Front. Electron. 1, (2020), https://doi.org/10.3389/felec.2020.594003 [CrossRef] [Google Scholar]
  9. E. Torres Alonso, D.P. Rodrigues, M. Khetani, et al., Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flex. Electron. 2, 1 (2018), https://doi.org/10.1038/s41528-018-0040-2 [CrossRef] [Google Scholar]
  10. J. Wade, J. Razzell Hollis, S. Wood, Printed Electronics, IOP Publishing Ltd., Bristol, 2018 [Google Scholar]
  11. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review, IEEE Sensors J. 15(6), 3164–3185 (2015), https://doi.org/10.1109/JSEN.2014.2375203 [CrossRef] [Google Scholar]
  12. M. Betz, M. Schuckert, C. Herrmann, Life cycle engineering as decision making support in the electronics industry, in: Proceedings of the1998 IEEE International Symposium on Electronics and the Environment, May 4–6, 1998, Oak Brook, Illinois, 1998, pp. 231–236, https://doi.org/10.1109/ISEE.1998.675063 [Google Scholar]
  13. J. Wiklund, A. Karakoç, T. Palko, et al., A review on printed electronics: fabrication methods, inks, substrates, applications and environmental impacts, J. Manuf. Mater. Process. 5(3), 89 (2021), https://doi.org/10.3390/jmmp5030089 [Google Scholar]
  14. Y. Li, D. Lu, C.P. Wong, Electrical conductive adhesives with nanotechnologies, Springer US, Boston, MA, 2010 [CrossRef] [Google Scholar]
  15. K.-S. Kwon, M.K. Rahman, T.H. Phung, et al., Review of digital printing technologies for electronic materials, Flex. Print. Electron. (2020), https://doi.org/10.1088/2058-8585/abc8ca [Google Scholar]
  16. L. Hakola, E. Jansson, Sustainable substrate for printed electronics, Nip. Digi. Fabric Conf. 1, 132–137 (2019), https://doi.org/10.2352/ISSN.2169-4451.2019.35.132 [CrossRef] [Google Scholar]
  17. F. Gehring, T. Prenzel, S. Albrecht, Environmental impacts and implications of RFID tags. Deliverable 11.1 of the NECOMADA project funded under the European Union’s Horizon 2020 research and innovation programme GA No: 720897, Fraunhofer IBP, 2019 [Google Scholar]
  18. S. Agate, M. Joyce, L. Lucia, et al., Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites − A review, Carbohydr. Polym. 198, 249–260 (2018), https://doi.org/10.1016/j.carbpol.2018.06.045 [CrossRef] [Google Scholar]
  19. Y. Leterrier, Mechanics of curvature and strain in flexible organic electronic devices, in: S. Logothetidis (Ed.), Handbook of flexible organic electronics. Materials, manufacturing and applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Reference Monographs, 2014 [Google Scholar]
  20. K. Suganuma, Introduction to printed electronics, in: SpringerBriefs in Electrical and Computer Engineering 74, Springer New York, New York, NY, 2014, s.l. [CrossRef] [Google Scholar]
  21. M. Irimia-Vladu, N. Serdar Sariciftci, S. Bauer, Exotic materials for bio-organic electronics, J. Mater. Chem. 21(5), 1350–1361 (2011), https://doi.org/10.1039/c0jm02444a [CrossRef] [Google Scholar]
  22. Sphera, GaBi Software System for Life Cycle Engineering, Sphera Solutions GmbH, 2021 [Google Scholar]
  23. Sphera, GaBi CUP2021.1 Database for life cycle engineering. Professional and Extension Databases 1a to XXII, (2021) [Google Scholar]
  24. A.A. Efimov, P.V. Arsenov, V.I. Borisov, et al., Synthesis of nanoparticles by spark discharge as a facile and versatile technique of preparing highly conductive Pt nano-ink for printed electronics, Nanomaterials (Basel, Switzerland) 11, 1 (2021), https://doi.org/10.3390/nano11010234 [Google Scholar]
  25. A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics, Small 10(17), 3515–3535 (2014), https://doi.org/10.1002/smll.201303000 [CrossRef] [Google Scholar]
  26. S. Li, P. Liu, Q. Wang, et al., Synthesis of Cu Nano-particle in toluene used for conductive ink with a binder of polyurethane, J. Wuhan Univ. Technol. Mater. Sci. Ed. (2013), https://doi.org/10.1007/s11595-013-0854-7 [Google Scholar]
  27. C. Iriarte-Mesa, Y.C. López, Y. Matos-Peralta, et al., Gold, silver and iron oxide nanoparticles: synthesis and bionanoconjugation strategies aimed at electrochemical applications, Top. Curr. Chem. (Cham) 378(1), 12 (2020), https://doi.org/10.1007/s41061-019-0275-y [CrossRef] [Google Scholar]
  28. S. Majee, M. Karlsson, A. Sawatdee, et al., Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components. NPJ Flex. Electron. (2021), https://doi.org/10.1038/s41528-021-00111-1 [Google Scholar]
  29. Y. Qin, A.U. Alam, M.M.R. Howlader, et al., Inkjet printing of a highly loaded palladium ink for integrated, low-cost pH sensors, Adv. Funct. Mater. 26(27), 4923–4933 (2016), https://doi.org/10.1002/adfm.201600657 [CrossRef] [Google Scholar]
  30. E. Saleh, M. Praeger, A.S. Vaughan, et al., The direct writing and focusing of nanoparticles generated by an electrical discharge, J. Nanopart. Res. 14, 11 (2012) [CrossRef] [Google Scholar]
  31. M. Slotte, R. Zevenhoven, Energy efficiency and scalability of metallic nanoparticle production using arc/spark discharge, Energies 10(10), 1605 (2017) [CrossRef] [Google Scholar]
  32. A.S.G. Andrae, O. Andersen, Life cycle assessment of integrated circuit packaging technologies, Int. J. Life Cycle Assess. 16 (3), 258–267 (2011), https://doi.org/10.1007/s11367-011-0260-3 [CrossRef] [Google Scholar]
  33. S. Boyd, Life-cycle assessment of semiconductors, Dissertation, University of California, Berkeley, 2009 [Google Scholar]
  34. R. Blache, J. Krumm, W. Fix, Organic CMOS circuits for RFID applications, in: Technical digest/2009 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, California, 8–12 February 2009, volume 52, IEEE, Piscataway, NJ, 2009, pp. 208–209, 209a, https://doi.org/10.1109/ISSCC.2009.4977381 [CrossRef] [Google Scholar]
  35. E. Cantatore, T.C.T. Geuns, G.H. Gelinck, et al. A 13.56-MHz RFID system based on organic transponders, IEEE J. Solid State Circuits 42(1), 84–92 (2007), https://doi.org/10.1109/JSSC.2006.886556 [CrossRef] [Google Scholar]
  36. T. Gao, J. Deng, X. Li, et al., Printed solid state electrolyte carbon nanotube thin film transistors for sub-1 V fully printed flexible CMOS inverters, J. Mater. Chem. C 9(21), 6852–6862 (2021), https://doi.org/10.1039/D1TC00357G [CrossRef] [Google Scholar]
  37. International Organization for Standardization, Environmental management − Life cycle assessment − Principles and framework − Amendment 1. ISO 1404 4/AMD 1:2020, 2020 [Google Scholar]
  38. K. Finkenzeller, RFID-Handbuch. Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC, Carl Hanser Verlag GmbH & Co. KG, München, 2015 [CrossRef] [Google Scholar]
  39. T. Bjorninen, S. Merilampi, L. Ukkonen, et al., The effect of fabrication method on passive UHF RFID tag performance, Int. J. Antennas Propag. (2009), https://doi.org/10.1155/2009/920947 [Google Scholar]
  40. R. Søndergaard, M. Hösel, D. Angmo, et al., Roll-to-roll fabrication of polymer solar cells, Materials Today 15(1–2), 36–49 (2012), https://doi.org/10.1016/S1369-7021(12)70019-6 [CrossRef] [Google Scholar]
  41. H.H.H. Maalderink, F.B.J. Bruning, M.M.R. de Schipper, et al., 3D printed structural electronics: embedding and connecting electronic components into freeform electronic devices, Plast. Rubber Compos. 47(1), 35–41 (2018), https://doi.org/10.1080/14658011.2017.1418165 [CrossRef] [Google Scholar]
  42. Organic and Printed Electronics Association, Shedding light on the sustainable aspects of printed electronics. Interview with Sophie Isabel Verstaelen, OPE J. 28 (2019) [Google Scholar]
  43. T. Betten, D. Wehner, S. Pfeuffer, Managing uncertainty in life cycle assessment with methods of data science, in: Environmental informatics: computational sustainability: ICT methods to achieve the UN sustainable development goals. Adjunct Proceedings of the 33rd edition of the EnviroInfo, R. e. a. Schladach, Ed., 2019 [Google Scholar]
  44. S. Pfeuffer, D. Wehner, R. Bouslama, Managing uncertainties in LCA dataset selection, in: P. Ball, R.J. Howlett, R. Setchi, L. Huaccho Huatuco (Eds.), Sustainable design and manufacturing 2019: Proceedings of the 6th International Conference on Sustainable Design and Manufacturing (KES-SDM 19), Smart Innovation, Systems and Technologies, Springer, Singapore, 2019, pp. 73–75, https://doi.org/10.1007/978-981-13-9271-9_7 [CrossRef] [Google Scholar]
  45. A.-K. Briem, T. Betten, M. Held, et al., Environmental sustainability in the context of mass personalisation − quantification of the carbon footprint with life cycle assessment, Int. J. Ind. Eng. Manag. 10(2), 171–180 (2019), https://doi.org/10.24867/IJIEM-2019-2-237 [CrossRef] [Google Scholar]
  46. A.-K. Briem, T. Betten, D. Wehner, Personalized life cycle assessment − Reflecting individuality within the methodological framework, Matér Tech. 107(5), 507 (2019), https://doi.org/10.1051/mattech/2019030 [Google Scholar]
  47. F. Gehring, T.M. Prenzel, R. Graf, et al., Sustainability screening in the context of advanced material development for printed electronics, Matériaux & Techniques 109, 505 (2021), https://doi.org/10.1051/mattech/2022013 [Google Scholar]
  48. N. Moreau, T. Pirson, G. Le Brun, et al., Could unsustainable electronics support sustainability?, Sustainability 13(12), 6541 (2021), https://doi.org/10.3390/su13126541 [CrossRef] [Google Scholar]
  49. E. Dominish, M. Retamal, S. Sharpe, et al., “Slowing” and “narrowing” the flow of metals for consumer goods: evaluating opportunities and barriers, Sustainability 10(4), 1096 (2018), https://doi.org/10.3390/su10041096 [CrossRef] [Google Scholar]
  50. T.M. Prenzel, F. Gehring, S. Albrecht, et al., Printed electronics: sustainable enable for the internet of things?, in: LCM Conference Series, Poznan, Poland, 2019 [Google Scholar]
  51. M. Schneider, F. Steinwender, RFID in der Kreislaufwirtschaft − Tatsachen und Prognosen, in: A.I. Urban, G. Halm (Eds.), Mit RFID zur innovativen Kreislaufwirtschaft, Schriftenreihe des Fachgebietes Abfalltechnik/Universität Kassel UNIK-AT 10, Kassel Univ. Press, 2009 [Google Scholar]
  52. L. Zampori, S. Sala, Feasibility study to implement resource dissipation in LCA, in: JRC Technical Report, European Commission, Luxembourg, 2017, https://doi.org/10.2760/869503 [Google Scholar]
  53. T. Zimmermann, Uncovering the fate of critical metals. Tracking dissipative losses along the product life cycle, J. Ind. Ecol. 21(5), 1198–1211 (2017), https://doi.org/10.1111/jiec.12492 [CrossRef] [Google Scholar]
  54. A.M.J. Marindra, P. Pongpaibool, W. Wallada, et al., An optimized ink-reducing hollowed-out arm meander dipole antenna structure for printed RFID tags, Int. J. Microw. Wirel. Technol. 9(2), 469–479 (2017), https://doi.org/10.1017/S1759078715001725 [CrossRef] [Google Scholar]
  55. J. Sidén, T. Olsson, A. Koptioug, et al., Reduced amount of conductive ink with gridded printed antennas, in: 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics − Polytronic, 2005, pp. 86–89 [CrossRef] [Google Scholar]
  56. A.S.G. Andrae, O. Andersen, Life cycle assessments of consumer electronics — are they consistent?, Int. J. Life Cycle Assess. 15(8), 827–836 (2010), https://doi.org/10.1007/s11367-011-0260-3 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.