Numéro
Matériaux & Techniques
Volume 109, Numéro 5-6, 2021
Special Issue on ‘Materials and Society: the circular economy, design for circularity and industrial symbiosis’, edited by Jean-Pierre Birat, Gaël Fick, Nicolas Perry, Andrea Declich, Leiv Kolbensein, Dominique Millet and Thecle Alix
Numéro d'article 506
Nombre de pages 12
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2022016
Publié en ligne 10 mai 2022
  1. B.N. Altay, M. Bolduc, S.G. Cloutier, Sustainable advanced manufacturing of printed electronics: an environmental consideration, in: E.H. Yap, A.H.P. Tan (Eds.), Green energy and environment, IntechOpen, London, United Kingdom, 2020, https://doi.org/10.5772/intechopen.91979 [Google Scholar]
  2. E. Kunnari, J. Valkama, M. Keskinen, et al., Environmental evaluation of new technology: printed electronics case study, J. Cleaner Prod. 17(9), 791–799 (2009), https://doi.org/10.1016/j.jclepro.2008.11.020 [CrossRef] [Google Scholar]
  3. A. Canal Marques, J.-M. Cabrera, C. de Fraga Malfatti, Printed circuit boards: a review on the perspective of sustainability. J. Environ. Manag. 131, 298–306 (2013), https://doi.org/10.1016/j.jenvman.2013.10.003 [CrossRef] [Google Scholar]
  4. J. Ding, J. Liu, Q. Tian, et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution, Nanoscale Res. Lett. 11(1), 412 (2016), https://doi.org/10.1186/s11671-016-1640-1 [CrossRef] [Google Scholar]
  5. W. Wu, Inorganic nanomaterials for printed electronics: a review, Nanoscale 9(22), 7342–7372 (2017), https://doi.org/10.1039/C7NR01604B [CrossRef] [Google Scholar]
  6. A. Blayo, B. Pineaux, Printing processes and their potential for RFID printing, in: Joint sOc-EUSAI Conference, 2005, https://doi.org/10.1145/1107548.1107559 [Google Scholar]
  7. M. Berggreen, D. Nilsson, N.D. Robinson, Organic materials for printed electronics, Nat. Mater. 6(1), 3–5 (2007), https://doi.org/10.1038/nmat1817 [CrossRef] [Google Scholar]
  8. D. Corzo, G. Tostado-Blázquez, D. Baran, Flexible electronics: status, challenges and opportunities, Front. Electron. 1, (2020), https://doi.org/10.3389/felec.2020.594003 [CrossRef] [Google Scholar]
  9. E. Torres Alonso, D.P. Rodrigues, M. Khetani, et al., Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. NPJ Flex. Electron. 2, 1 (2018), https://doi.org/10.1038/s41528-018-0040-2 [CrossRef] [Google Scholar]
  10. J. Wade, J. Razzell Hollis, S. Wood, Printed Electronics, IOP Publishing Ltd., Bristol, 2018 [Google Scholar]
  11. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review, IEEE Sensors J. 15(6), 3164–3185 (2015), https://doi.org/10.1109/JSEN.2014.2375203 [CrossRef] [Google Scholar]
  12. M. Betz, M. Schuckert, C. Herrmann, Life cycle engineering as decision making support in the electronics industry, in: Proceedings of the1998 IEEE International Symposium on Electronics and the Environment, May 4–6, 1998, Oak Brook, Illinois, 1998, pp. 231–236, https://doi.org/10.1109/ISEE.1998.675063 [Google Scholar]
  13. J. Wiklund, A. Karakoç, T. Palko, et al., A review on printed electronics: fabrication methods, inks, substrates, applications and environmental impacts, J. Manuf. Mater. Process. 5(3), 89 (2021), https://doi.org/10.3390/jmmp5030089 [Google Scholar]
  14. Y. Li, D. Lu, C.P. Wong, Electrical conductive adhesives with nanotechnologies, Springer US, Boston, MA, 2010 [CrossRef] [Google Scholar]
  15. K.-S. Kwon, M.K. Rahman, T.H. Phung, et al., Review of digital printing technologies for electronic materials, Flex. Print. Electron. (2020), https://doi.org/10.1088/2058-8585/abc8ca [Google Scholar]
  16. L. Hakola, E. Jansson, Sustainable substrate for printed electronics, Nip. Digi. Fabric Conf. 1, 132–137 (2019), https://doi.org/10.2352/ISSN.2169-4451.2019.35.132 [CrossRef] [Google Scholar]
  17. F. Gehring, T. Prenzel, S. Albrecht, Environmental impacts and implications of RFID tags. Deliverable 11.1 of the NECOMADA project funded under the European Union’s Horizon 2020 research and innovation programme GA No: 720897, Fraunhofer IBP, 2019 [Google Scholar]
  18. S. Agate, M. Joyce, L. Lucia, et al., Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites − A review, Carbohydr. Polym. 198, 249–260 (2018), https://doi.org/10.1016/j.carbpol.2018.06.045 [CrossRef] [Google Scholar]
  19. Y. Leterrier, Mechanics of curvature and strain in flexible organic electronic devices, in: S. Logothetidis (Ed.), Handbook of flexible organic electronics. Materials, manufacturing and applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Reference Monographs, 2014 [Google Scholar]
  20. K. Suganuma, Introduction to printed electronics, in: SpringerBriefs in Electrical and Computer Engineering 74, Springer New York, New York, NY, 2014, s.l. [CrossRef] [Google Scholar]
  21. M. Irimia-Vladu, N. Serdar Sariciftci, S. Bauer, Exotic materials for bio-organic electronics, J. Mater. Chem. 21(5), 1350–1361 (2011), https://doi.org/10.1039/c0jm02444a [CrossRef] [Google Scholar]
  22. Sphera, GaBi Software System for Life Cycle Engineering, Sphera Solutions GmbH, 2021 [Google Scholar]
  23. Sphera, GaBi CUP2021.1 Database for life cycle engineering. Professional and Extension Databases 1a to XXII, (2021) [Google Scholar]
  24. A.A. Efimov, P.V. Arsenov, V.I. Borisov, et al., Synthesis of nanoparticles by spark discharge as a facile and versatile technique of preparing highly conductive Pt nano-ink for printed electronics, Nanomaterials (Basel, Switzerland) 11, 1 (2021), https://doi.org/10.3390/nano11010234 [Google Scholar]
  25. A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics, Small 10(17), 3515–3535 (2014), https://doi.org/10.1002/smll.201303000 [CrossRef] [Google Scholar]
  26. S. Li, P. Liu, Q. Wang, et al., Synthesis of Cu Nano-particle in toluene used for conductive ink with a binder of polyurethane, J. Wuhan Univ. Technol. Mater. Sci. Ed. (2013), https://doi.org/10.1007/s11595-013-0854-7 [Google Scholar]
  27. C. Iriarte-Mesa, Y.C. López, Y. Matos-Peralta, et al., Gold, silver and iron oxide nanoparticles: synthesis and bionanoconjugation strategies aimed at electrochemical applications, Top. Curr. Chem. (Cham) 378(1), 12 (2020), https://doi.org/10.1007/s41061-019-0275-y [CrossRef] [Google Scholar]
  28. S. Majee, M. Karlsson, A. Sawatdee, et al., Low temperature chemical sintering of inkjet-printed Zn nanoparticles for highly conductive flexible electronic components. NPJ Flex. Electron. (2021), https://doi.org/10.1038/s41528-021-00111-1 [Google Scholar]
  29. Y. Qin, A.U. Alam, M.M.R. Howlader, et al., Inkjet printing of a highly loaded palladium ink for integrated, low-cost pH sensors, Adv. Funct. Mater. 26(27), 4923–4933 (2016), https://doi.org/10.1002/adfm.201600657 [CrossRef] [Google Scholar]
  30. E. Saleh, M. Praeger, A.S. Vaughan, et al., The direct writing and focusing of nanoparticles generated by an electrical discharge, J. Nanopart. Res. 14, 11 (2012) [CrossRef] [Google Scholar]
  31. M. Slotte, R. Zevenhoven, Energy efficiency and scalability of metallic nanoparticle production using arc/spark discharge, Energies 10(10), 1605 (2017) [CrossRef] [Google Scholar]
  32. A.S.G. Andrae, O. Andersen, Life cycle assessment of integrated circuit packaging technologies, Int. J. Life Cycle Assess. 16 (3), 258–267 (2011), https://doi.org/10.1007/s11367-011-0260-3 [CrossRef] [Google Scholar]
  33. S. Boyd, Life-cycle assessment of semiconductors, Dissertation, University of California, Berkeley, 2009 [Google Scholar]
  34. R. Blache, J. Krumm, W. Fix, Organic CMOS circuits for RFID applications, in: Technical digest/2009 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, California, 8–12 February 2009, volume 52, IEEE, Piscataway, NJ, 2009, pp. 208–209, 209a, https://doi.org/10.1109/ISSCC.2009.4977381 [CrossRef] [Google Scholar]
  35. E. Cantatore, T.C.T. Geuns, G.H. Gelinck, et al. A 13.56-MHz RFID system based on organic transponders, IEEE J. Solid State Circuits 42(1), 84–92 (2007), https://doi.org/10.1109/JSSC.2006.886556 [CrossRef] [Google Scholar]
  36. T. Gao, J. Deng, X. Li, et al., Printed solid state electrolyte carbon nanotube thin film transistors for sub-1 V fully printed flexible CMOS inverters, J. Mater. Chem. C 9(21), 6852–6862 (2021), https://doi.org/10.1039/D1TC00357G [CrossRef] [Google Scholar]
  37. International Organization for Standardization, Environmental management − Life cycle assessment − Principles and framework − Amendment 1. ISO 1404 4/AMD 1:2020, 2020 [Google Scholar]
  38. K. Finkenzeller, RFID-Handbuch. Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC, Carl Hanser Verlag GmbH & Co. KG, München, 2015 [CrossRef] [Google Scholar]
  39. T. Bjorninen, S. Merilampi, L. Ukkonen, et al., The effect of fabrication method on passive UHF RFID tag performance, Int. J. Antennas Propag. (2009), https://doi.org/10.1155/2009/920947 [Google Scholar]
  40. R. Søndergaard, M. Hösel, D. Angmo, et al., Roll-to-roll fabrication of polymer solar cells, Materials Today 15(1–2), 36–49 (2012), https://doi.org/10.1016/S1369-7021(12)70019-6 [CrossRef] [Google Scholar]
  41. H.H.H. Maalderink, F.B.J. Bruning, M.M.R. de Schipper, et al., 3D printed structural electronics: embedding and connecting electronic components into freeform electronic devices, Plast. Rubber Compos. 47(1), 35–41 (2018), https://doi.org/10.1080/14658011.2017.1418165 [CrossRef] [Google Scholar]
  42. Organic and Printed Electronics Association, Shedding light on the sustainable aspects of printed electronics. Interview with Sophie Isabel Verstaelen, OPE J. 28 (2019) [Google Scholar]
  43. T. Betten, D. Wehner, S. Pfeuffer, Managing uncertainty in life cycle assessment with methods of data science, in: Environmental informatics: computational sustainability: ICT methods to achieve the UN sustainable development goals. Adjunct Proceedings of the 33rd edition of the EnviroInfo, R. e. a. Schladach, Ed., 2019 [Google Scholar]
  44. S. Pfeuffer, D. Wehner, R. Bouslama, Managing uncertainties in LCA dataset selection, in: P. Ball, R.J. Howlett, R. Setchi, L. Huaccho Huatuco (Eds.), Sustainable design and manufacturing 2019: Proceedings of the 6th International Conference on Sustainable Design and Manufacturing (KES-SDM 19), Smart Innovation, Systems and Technologies, Springer, Singapore, 2019, pp. 73–75, https://doi.org/10.1007/978-981-13-9271-9_7 [CrossRef] [Google Scholar]
  45. A.-K. Briem, T. Betten, M. Held, et al., Environmental sustainability in the context of mass personalisation − quantification of the carbon footprint with life cycle assessment, Int. J. Ind. Eng. Manag. 10(2), 171–180 (2019), https://doi.org/10.24867/IJIEM-2019-2-237 [CrossRef] [Google Scholar]
  46. A.-K. Briem, T. Betten, D. Wehner, Personalized life cycle assessment − Reflecting individuality within the methodological framework, Matér Tech. 107(5), 507 (2019), https://doi.org/10.1051/mattech/2019030 [Google Scholar]
  47. F. Gehring, T.M. Prenzel, R. Graf, et al., Sustainability screening in the context of advanced material development for printed electronics, Matériaux & Techniques 109, 505 (2021), https://doi.org/10.1051/mattech/2022013 [Google Scholar]
  48. N. Moreau, T. Pirson, G. Le Brun, et al., Could unsustainable electronics support sustainability?, Sustainability 13(12), 6541 (2021), https://doi.org/10.3390/su13126541 [CrossRef] [Google Scholar]
  49. E. Dominish, M. Retamal, S. Sharpe, et al., “Slowing” and “narrowing” the flow of metals for consumer goods: evaluating opportunities and barriers, Sustainability 10(4), 1096 (2018), https://doi.org/10.3390/su10041096 [CrossRef] [Google Scholar]
  50. T.M. Prenzel, F. Gehring, S. Albrecht, et al., Printed electronics: sustainable enable for the internet of things?, in: LCM Conference Series, Poznan, Poland, 2019 [Google Scholar]
  51. M. Schneider, F. Steinwender, RFID in der Kreislaufwirtschaft − Tatsachen und Prognosen, in: A.I. Urban, G. Halm (Eds.), Mit RFID zur innovativen Kreislaufwirtschaft, Schriftenreihe des Fachgebietes Abfalltechnik/Universität Kassel UNIK-AT 10, Kassel Univ. Press, 2009 [Google Scholar]
  52. L. Zampori, S. Sala, Feasibility study to implement resource dissipation in LCA, in: JRC Technical Report, European Commission, Luxembourg, 2017, https://doi.org/10.2760/869503 [Google Scholar]
  53. T. Zimmermann, Uncovering the fate of critical metals. Tracking dissipative losses along the product life cycle, J. Ind. Ecol. 21(5), 1198–1211 (2017), https://doi.org/10.1111/jiec.12492 [CrossRef] [Google Scholar]
  54. A.M.J. Marindra, P. Pongpaibool, W. Wallada, et al., An optimized ink-reducing hollowed-out arm meander dipole antenna structure for printed RFID tags, Int. J. Microw. Wirel. Technol. 9(2), 469–479 (2017), https://doi.org/10.1017/S1759078715001725 [CrossRef] [Google Scholar]
  55. J. Sidén, T. Olsson, A. Koptioug, et al., Reduced amount of conductive ink with gridded printed antennas, in: 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics − Polytronic, 2005, pp. 86–89 [CrossRef] [Google Scholar]
  56. A.S.G. Andrae, O. Andersen, Life cycle assessments of consumer electronics — are they consistent?, Int. J. Life Cycle Assess. 15(8), 827–836 (2010), https://doi.org/10.1007/s11367-011-0260-3 [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.