Matériaux & Techniques
Volume 108, Number 5-6, 2020
Materials and Society: transitions in society, materials and energy
Article Number 502
Number of page(s) 26
Section Environnement - recyclage / Environment - recycling
Published online 26 April 2021
  1. UN Sustainable Development Goals, United Nations, [Google Scholar]
  2. Die Deutsche Nachhaltigkeitsstrategie, [Google Scholar]
  3. Time for more integrated action with urgency, cohesion and high ambition, WWF Europe, [Google Scholar]
  4. Sustainability, Sustainable development is at the heart of our purpose: Inventing smarter steels for a better world, ArcelorMittal, [Google Scholar]
  5. J.-P. Birat, Introduction: Man and Nature, Chapter 1, Sustain. Mater. Sci. Environ. Metall. 1, 1–36 (2020), EDP sciences, Les Ulis, France, 476 p. [Google Scholar]
  6. S. Vaclav, Energy Transitions: History, Requirements, Prospects, Praeger, 2010, 178 p. [Google Scholar]
  7. G. Leach, The Energy Transition, Energy Policy 20(2), 116–123 (1992) [CrossRef] [Google Scholar]
  8. Energy Transition, Wikipedia, [accessed on 22 March 2020]. The article is emblematic of the misconceptions about historical trends and economic evolutions that are shared by people that do not belong to the Social Science community but tell historical narratives anyway [Google Scholar]
  9. F. Jarrige, A. Vrignon, Face à la puissance, une histoire des énergies alternatives à l’âge industriel, La Découverte, Paris, 2020, 393 p. [CrossRef] [Google Scholar]
  10. R.-J. Geerts, Philosophical explorations on energy transition, PhD thesis, Wageningen University, Wageningen, NL, 2017, 172 p. [Google Scholar]
  11. J. Diamond, Upheaval, how nations cope with crisis and change, Penguin Books, Allen Lane, 2019, 500 p. [Google Scholar]
  12. Article Mutazione, Changement, révolution (pp. 847–849), in: B. Cassin, ed., Vocabulaire européene des philosophies, Seuil-le Robert, Paris, 2004, 1563 p. [Google Scholar]
  13. A. Marie, P. Goutagny, La notion de Transition en géographie, Université de Dijon, 2019, [accessed on 22/03/2020] [Google Scholar]
  14. [Google Scholar]
  15. Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply, Federal Ministry of Economics and Technology (BMWi), Berlin, Germany, 2010 [Google Scholar]
  16. The Energy of the Future: Fourth “Energy Transition” Monitoring Report – Summary, Federal Ministry for Economic Affairs and Energy (BMWi), Berlin, Germany, 2015 [Google Scholar]
  17. Energiewende, Wikipedia in English, [Google Scholar]
  18. F. Varela, Germany 2020, Energy Policy review, Country Report, IEA, 2020, [accessed on 25/03/2020] [Google Scholar]
  19. Germany’s Energy Plan Is Leading to Insecure Supply, Institute for Energy Research (IER), 2019 [Google Scholar]
  20. M. Gay, Energiewende en Allemagne : le désastre constaté va s’amplifier, Le Monde de l’énergie, 2019 [Google Scholar]
  21. Loi de transition énergétique pour la croissance verte, France, adoptée à l’été 2015 [Google Scholar]
  22. A. Mason, W. Martindale, A. Heath, S. Chatterjee, French energy transition law − Global investor briefing, UNEP Finance Initiative, IGCC, IIGCC, 2016 [Google Scholar]
  23. ADEME 2035–2050, Actualisation du scénario énergie-climat, ADEME, 2017, 44 p. [Google Scholar]
  24. Scénario négaWatt 2017–2050, Réussir la transition énergétique en France, 2019, [Google Scholar]
  25. Picture credit, reference [11] [Google Scholar]
  26. [Google Scholar]
  27. UNEP, [Google Scholar]
  28. S. Tagliapietra, G. Zachmann, O. Edenhofer, J.-M. Glachant, P. Linares, A. Loeschel, Policy brief – The European Union energy transition: Key priorities for the next five years, Policy Brief, Issue 1, July 2018, Bruegel, Brussels [Google Scholar]
  29. European Commission, Energy Roadmap 2050, COM(2011) 885, (2011) [Google Scholar]
  30. European Commission, A policy framework for climate and energy in the period from 2020 to 2030, COM/2014/015 final, 2014 [Google Scholar]
  31. European Commission, Commission Proposal for a Regulation: European Climate Law, COM(2020) 80, (2020) [Google Scholar]
  32. A roadmap to 2050, Global energy transformation, IRENA, International Renewable Energy Agency, Abu Dhabi, 2018, 75 p. [Google Scholar]
  33. Japan, IEA, Paris, 2019, [Google Scholar]
  34. Japan, 2016 review, Energy Policy of IEA countries, OECD-IEA, 2016, 180 p. [Google Scholar]
  35. Y. Qi, N. Stern, J. He, et al., China’s Peaking Emissions and the Future of Global Climate Policy, in: China’s energy in transition Series, Brookings, Tsinghua Center for Public Policy, 2018 [Google Scholar]
  36. 能源生产和消费革命战略 (2016–2030), Government of China, 2016, 41 p, [Google Scholar]
  37. The Ecological Transition Towards Sustainable Development, A new strategy for 2015–2020 French government [Google Scholar]
  38. A.D. Barnosky, et al., Approaching a state shift in Earth’s biosphere, Nature 486, 52–58 (2012) [CrossRef] [PubMed] [Google Scholar]
  39. V. Dakos, Ecological Transitions: Regime Shifts, Thresholds and Tipping Points, Oxford bibliographies, HAL archives ouvertes, 2019, [Google Scholar]
  40. J.W. Bennett, The Ecological Transition: Cultural Anthropology and Human Adaptation, Pergamon Press, New York, 1976, 378 p. [Google Scholar]
  41. European Parliament, Changement climatique : accord sur de nouvelles règles pour déterminer quels investissements sont écologiques, 2019, [Google Scholar]
  42. P. Robineau (coordinator), From Transition to Transformation – Sustainable and Inclusive Development in Europe and Central Asia, UNECE, New York and Geneva, 2012, 156 p. [Google Scholar]
  43. É. Laurent, P. Pochet, Towards a social-ecological transition – Solidarity in the age of environmental challenge, ETUI, Brussels, 2015, 36 p. [Google Scholar]
  44. W. Kalinowski, A. Lalucq, P. Frémeaux, The Ecological Transition: A User’s Guide, A user’s guide on reconciling the necessary and the desirable, in: Alternatives économiques, Les petits matins, 2013 [Google Scholar]
  45. J.-P. Birat, The environment, from the standpoints of philosophy, social sciences and political activism, Matériaux & Techniques 107(1), 2019, DOI: 10.1051/mattech/2018067 [Google Scholar]
  46. B. Latour, Imaginer les gestes-barrières contre le retour à la production d’avant-crise, AOC-Média, 2020, [Google Scholar]
  47. B. Latour, Interview, France Inter, le 7/9, 2020 [Google Scholar]
  48. J.C.J.M. van den Bergh, B. Truffer, G. Kallis, Environmental Innovation and Societal Transitions, Elsevier, 1(1), 1–23 (2011), DOI: 10.1016/j.eist.2011.04.010 [Google Scholar]
  49. K.R. Smith, M. Ezzati, How environmental health risks change with development: The Epidemiologic and Environmental Risk Transitions Revisited, Annu. Rev. Environ. Resour. 30, 291–333 (2005) [CrossRef] [Google Scholar]
  50. J. Rotmans, R. Kemp, Managing Societal Transitions: Dilemmas and Uncertainties: The Dutch energy case-study, in: Communication to the OECD Workshop on the Benefits of Climate Policy: Improving Information for Policy Makers, OECD, 2003 [Google Scholar]
  51. Global Transitions, KeAi Communications Co, 2021 [Google Scholar]
  52. Transition Economies: An IMF Perspective on Progress and Prospects, International Monetary Fund, Washington D.C., 2000 [Google Scholar]
  53. J. Markard, R. Raven, B. Truffer, Sustainability transitions: An emerging field of research and its prospects, Res. Policy 41(6), 955–967 (2012) [CrossRef] [Google Scholar]
  54. The International Journal of Transitions and Innovation Systems (IJTIS), Inderscience, 2021, [Google Scholar]
  55. K.J. Geels, F.W. Kern, J. Markard, A. Wieczorek, F. Alkemade, P. Wells, An agenda for sustainability transitions research: State of the art and future directions, Environ. Innov. Soc. Trans. 2019, DOI: 10.1016/j.eist.2019.01.004 [Google Scholar]
  56. M. Beblavý, I. Maselli, M. Veselková (eds), Emerging Megatrends and scenarios in the socio-ecological transitions, Chapter 2 (pp. 14–25), in: Let’s get to work! The future of labour in Europe, Vol. 1, CEPS, Brussels, 2014 [Google Scholar]
  57. Office of Technology Transitions of the US DOE, [Google Scholar]
  58. The European Green Deal, Brussels, COM(2019) 640, 24 (2019) [Google Scholar]
  59. A Farm to Fork strategy, for a fair, healthy and environmentally-friendly food system, COM(2020), 381, 2020, 19 p, European Commission, Brussels, [Google Scholar]
  60. M.J. Burkea, J.C. Stephens, Political power and renewable energy futures: A critical review, Energy Res. Soc Sci. 35, 78–93 (2018) [CrossRef] [Google Scholar]
  61. Transition-org, [Google Scholar]
  62. Pacte pour la transition, [Google Scholar]
  63. J. Caletrio, Transition studies, in: Mobile Lives Forum, 2015, [Google Scholar]
  64. STRN, [Google Scholar]
  65. Transition Research Network, [Google Scholar]
  66. E.T. Hall, M.R. Hall, Guide du comportement dans les affaires internationales, Allemagne, États-Unis, France, Seuil, 1990, 253 p. [Google Scholar]
  67. M.S. Powers, Applying Schlossberg’s Transition Theory to Nontraditional Male Drop-outs, University of Nebraska, 2015, [Google Scholar]
  68. F.W. Geels, Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study, Res. Policy 31, 1257–1274 (2002) [CrossRef] [Google Scholar]
  69. J.-M. Hauteville, Plan climat : l’Allemagne adopte une taxe carbone plus ambitieuse, Le Monde, Paris, France, 2019 [Google Scholar]
  70. La valeur de l’action pour le climat − Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques, Rapport de la commission présidée par Alain Quinet, France Stratégie, Paris, France, 2019, 127 p. [Google Scholar]
  71. WHO, 9 out of 10 people worldwide breathe polluted air, [Google Scholar]
  72. A. Chemin, Réinventer la ville pour combattre les épidémies, Le Monde, Paris, 2020 [Google Scholar]
  73. G. Pitron, La guerre des métaux rares, la face cachée de la transition énergétique et numérique, in: Les liens qui libèrent, 2018, 295 p. [Google Scholar]
  74. Impacts environnementaux de l’éolien français, ADEME, 2015 [Google Scholar]
  75. T. Watari, B.C. McLellan, D. Giurco, E. Dominish, E. Yamasue, K. Nansai, Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103 (2019) [CrossRef] [Google Scholar]
  76. J.-P. Birat, Materials and energy, Chapter 9 (pp. 391–446), Sustain. Mater. Sci. Environ. Metall. 1, (2020), EDP Sciences, Les Ulis, France, 476 p. [Google Scholar]
  77. C. Coquery-Vidrovitch, Petite histoire de l’Afrique, La Découverte/Poche, 2011, 236 p. [Google Scholar]
  78. J.-P. Birat, Chapter 4: Materials comparison: competition or cooperation?, Sustain. Mater. Sci. Environ. Metall. 1, 173–227 (2020), EDP Sciences, Les Ulis, France, 476 p. [Google Scholar]
  79. Power generation by energy source, RTE, France, [Google Scholar]
  80. J.-P. Birat, A. Carvallo Aceves, Territorial sustainability footprint, Revue de Métallurgie 109, 323–331 (2012) [CrossRef] [Google Scholar]
  81. Norwegian Energy Regulatory Authority, Electricity disclosure 2017, 2017, [Google Scholar]
  82. O. Labussière, A. Nadaï, L’énergie des sciences sociales, in: Collection ATHENA, Open Edition Books, 2015, 166 p. [CrossRef] [Google Scholar]
  83. Journal Energy Research and Social Science, Elsevier, [Google Scholar]
  84. Sciences Sociales et Transitions Energétiques, in: Colloquium, 28–29 May, 2015, Grenoble, France [Google Scholar]
  85. A. Stirling, Transforming power: Social science and the politics of energy choices, Energy Res. Soc. Sci. 1, 83–95 (2014) [CrossRef] [Google Scholar]
  86. C. Foulds, R. Robison, Mobilising the Energy-Related Social Sciences and Humanities, Chapter 1, in: C. Foulds, R. Robison, eds., Advancing Energy Policy, 2018 [CrossRef] [Google Scholar]
  87. C. Foulds, R. Robison, eds., Advancing Energy Policy – Lessons on the Integration of Social Sciences and Humanities, Palgrave Mac Millan, Switzerland, 2018, 193 p. [CrossRef] [Google Scholar]
  88. L. Jammes, P. Vervier, T. Lesueur, Social site characterisation & stakeholder engagement, Global CCS Institute, Australia, 2012, [Google Scholar]
  89. L. Jammes, SHS et sous-sol dans la transition énergétique, in: Séminaire : Les sciences humaines et les nouveaux usages du sol et du sous-sol dans la transition énergétique, 7 October 2019, Nancy [Google Scholar]
  90. L. Ingeborgrud, S. Heidenreich, M. Ryghaug, et al., Expanding the scope and implications of energy research: A guide to key themes and concepts from the Social Sciences and Humanities, Energy Res. Soc. Sci. 63, 101398 (2020) [CrossRef] [Google Scholar]
  91. Social Sciences and Humanities (SSH) aspects of the Clean-Energy Transition, Call ID: LC-SC3-CC-1- 2018-2019-2020, [Google Scholar]
  92. R.-J. Geerts, B. Gremmen, J. Jacobs, G. Ruivenkamp, Towards a philosophy of energy, Scientiae Studia, São Paulo 12, (2014) [Google Scholar]
  93. H.B. Callen, Thermodynamics and an Introduction to Themostatistics, 2nd ed., John Wiley & Sons, New York, 1985 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.