Open Access
Matériaux & Techniques
Volume 106, Number 2, 2018
Article Number 202
Number of page(s) 12
Section Essais, mesure, contrôle non destructif / Testing, measurement and non destructive testing
Published online 21 September 2018
  1. J.R. Davis, Associates and ASM International, Eds., Handbook of thermal spray technology, ASM International, Materials Park, OH 2004. [Google Scholar]
  2. Z. Bergant, J. Grum, Porosity evaluation of flame-sprayed and heat-treated nickel-based coatings using image analysis, Image Anal. Stereol. 30, 53 (2011). [CrossRef] [Google Scholar]
  3. N. Serres, F. Hlawka, S. Costil, C. Langlade, F. Machi, Microstructures of metallic NiCrBSi coatings manufactured via hybrid plasma spray and in situ laser remelting process, J. Thermal Spray. Technol. 20, 336 (2011). [CrossRef] [Google Scholar]
  4. C. Navas, R. Colaço, J. de Damborenea, R. Vilar, Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings, Surf. Coating Technol. 200, 6854 (2006). [CrossRef] [Google Scholar]
  5. S.H. Yao, Tribological behaviour of NiCrBSi-WC(Co) coatings, Mater. Res. Innovations 18, S2 (2014). [Google Scholar]
  6. A. Hernández Battez, J.L. Viesca, R. González, D. Blanco, E. Asedegbega, A. Osorio, Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating, Wear 268, 325 (2010). [CrossRef] [Google Scholar]
  7. R.G. Munro, Material properties of titanium diboride, J. Res. Natl. Inst. Standards Technol. 105, 709 (2000). [CrossRef] [PubMed] [Google Scholar]
  8. O. Umanskyi, I. Hussainova, M. Storozhenko, O. Terentyev, M. Antonov, Effect of oxidation on sliding wear behavior of NiCrSiB-TiB2 plasma sprayed coatings, Key Eng. Mater. 604, 16 (2014). [CrossRef] [Google Scholar]
  9. O. Umanskyi, M. Storozhenko, I. Hussainova, O. Terentjev, A. Kovalchenko, M. Antonov, Effect of TiB2 additives on wear behavior of NiCrBSi-based plasma-sprayed coatings, J. Mater. Sci. 22, 15 (2016). [Google Scholar]
  10. S. Houdovka, E. Smazalov, V. Marek, J. Schubert, Properties of NiCrBSi coatings, as sprayed and remelted by different technologies, Surf. Coat. Technol. 253, 14 (2014). [CrossRef] [Google Scholar]
  11. N. Kazamer, D.T. Pascal, G. Marginean, V.A. Serban, W. Brandl, P.C. Valean, Aspects concerning the wear and corrosion of WC-CoCr and DLC systems, Nanocon 2016, Brno, Czech Republic, 2016. [Google Scholar]
  12. D. Chicot, M. Yetna N’Jock, E.S. Puchi-Cabrera, A. Iost, M.H. Staia, G. Louis, G. Bouscarrat, R. Aumaitre, A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film, Thin Solid Films 558, 259 (2014). [CrossRef] [Google Scholar]
  13. ISO 1457 7, Metallic materials—Instrumented indentation test for hardness and materials parameters. [Google Scholar]
  14. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19, 3 (2004). [Google Scholar]
  15. A.C. Fischer-Cripps, Nanoindentation testing, in Nanoindentation, Springer, New York, NY, 2011, pp. 21–37. [CrossRef] [Google Scholar]
  16. M. Yetna N’jock, D. Chicot, J.M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, A. Mejias, A criterion to identify sinking-in and piling-up in indentation of materials, Int. J. Mech. Sci. 90, 145 (2015). [CrossRef] [Google Scholar]
  17. J. Matějíček, M. Vilémová, R. Mušálek, P. Sachr, J. Horník, The influence of interface characteristics on the adhesion/cohesion of plasma sprayed tungsten coatings, Coatings 3, 108 (2013). [CrossRef] [Google Scholar]
  18. D.R. Glasson, J.A. Jones, Formation and reactivity of borides, carbides and silicides. I. Review and introduction J. Chem. Technol. Biotechnol. 19, 125 (1969). [Google Scholar]
  19. K. Aniołek, M. Kupka, A. Barylski, Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation, Wear, 23, 356 (2016). [Google Scholar]
  20. J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio, E.S.M. Sherif, Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels, Corrosion Sci. 50, 2572 (2008). [CrossRef] [Google Scholar]
  21. C. Li, A. Ohmori, R. McPherson, The relationship between microstructure and Young’s modulus of thermally sprayed ceramic coatings, J. Mater. Sci. 32, 997 (1997). [CrossRef] [Google Scholar]
  22. C.J. Li, A. Ohmori, Relationships between the microstructure and properties of thermally sprayed deposits, J. Therm. Spray. Technol. 11, 365 (2002). [CrossRef] [Google Scholar]
  23. J. Liu, Y. Wang, H. Li, S. Costil, R. Bolot, Numerical and experimental analysis of thermal and mechanical behavior of NiCrBSi coatings during the plasma spray process, J. Mater. Proc. Technol. 249, 471 (2017). [CrossRef] [Google Scholar]
  24. J. Luo, R. Stevens, Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics, Ceram. Int. 25, 281 (1999). [CrossRef] [Google Scholar]
  25. A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear 246, 1 (2000). [CrossRef] [Google Scholar]
  26. B. Jönsson, S. Hogmark, Hardness measurements of thin films, Thin Solid Films 114, 257 (1984). [CrossRef] [Google Scholar]
  27. I. Soroka, P.J. Sereda, Interrelation of hardness, modulus of elasticity, and porosity in various gypsum systems, J. Am. Ceram. Soc. 51, 337 (1968). [CrossRef] [Google Scholar]
  28. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. Minor, Y. Shen, Indentation across size scales and disciplines: recent developments in experimentation and modeling, Acta Mater. 55, 4015 (2007). [CrossRef] [Google Scholar]
  29. S. Cariou, F.J. Ulm, L. Dormieux, Hardness packing density scaling relations for cohesive-frictional porous materials, J. Mech. Phys. Solids 56, 924 (2008). [CrossRef] [Google Scholar]
  30. G.D. Quinn, P. Green, K. Xu, Cracking and the indentation size effect for Knoop hardness of glasses, J. Am. Ceram. Soc. 86, 441 (2003). [CrossRef] [Google Scholar]
  31. X. Chen, J.W. Hutchinson, A.G. Evans, The mechanics of indentation induced lateral cracking, J. Am. Ceram. Soc. 88, 1233 (2005). [CrossRef] [Google Scholar]
  32. T. Liyanage, G. Fisher, A.P. Gerlich, Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW), Surf. Coating Technol. 205, 759 (2010). [CrossRef] [Google Scholar]
  33. J. Sukumaran, M. Ando, P. De Baets, V. Rodriguez, L. Szabadi, G. Kalacska, V. Paepegem, Modelling gear contact with twin-disc setup, Tribol. Int. 49, 1 (2012). [CrossRef] [Google Scholar]
  34. J. Sukumaran, S. Soleimani, P. De Baets, V. Rodriguez, K. Douterloigne, W. Philips, M. Ando, High-speed imaging for online micrographs of polymer composites in tribological investigation, Wear 296, 702 (2012). [CrossRef] [Google Scholar]
  35. A. Czifra, T. Goda, E. Garbayo, Surface characterisation by parameter-based technique, sliding method and PSD analysis, Measurement 44, 906 (2011). [CrossRef] [Google Scholar]
  36. B. Palásti-Kovács, Z. Néder, A. Czifra, K. Váradi, Microtopography changes in wear process, Acta Polytech. Hungarica 1, 108 (2004). [Google Scholar]
  37. J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24, 981 (1953). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.