Open Access
Numéro |
Matériaux & Techniques
Volume 111, Numéro 3, 2023
|
|
---|---|---|
Numéro d'article | 304 | |
Nombre de pages | 13 | |
Section | Materials production and processing | |
DOI | https://doi.org/10.1051/mattech/2023016 | |
Publié en ligne | 28 juin 2023 |
- C.Y. Yap, C.K. Chua, Z.L. Dong, et al., Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2(4), (2015), https://doi.org/10.1063/1.4935926 [Google Scholar]
- E. Herderick, Additive manufacturing of metals: A review, Mater. Sci. Technol. Conf. Exhibit. 2011, MS and T’11 2(art. no. 176252), 1413–1425 (2011) [Google Scholar]
- N. Li, S. Huang, G. Zhang, et al., Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol. 35(2), 242–269 (2019), https://doi.org/10.1016/j.jmst.2018.09.002 [CrossRef] [Google Scholar]
- I. Gibson, B. Stucker, D. Rosen, Additive manufacturing technologies 3D printing, in: Rapid prototyping, and direct digital manufacturing, 2nd ed., 2019, https://doi.org/10.1007/978-1-4939-2113-3 [Google Scholar]
- C.Y. Zhang, Y.P. Ren, X.S. Chen, The development situation of selective laser melting metal powder based on 3D printing, Appl. Mech. Mater. 518, 12–18 (2014), https://doi.org/10.4028/www.scientific.net/AMM.518.12 [CrossRef] [Google Scholar]
- S. Vock, B. Klöden, A. Kirchner, et al., Powders for powder bed fusion: A review, Progr. Addit. Manuf. 4(4), 383–397 (2019), https://doi.org/10.1007/s40964-019-00078-6 [CrossRef] [Google Scholar]
- B. Zhang, Y. Li, Q. Bai, Defect formation mechanisms in selective laser melting: A review, Chin. J. Mech. Eng. (English Ed.) 30(3), 515–527 (2017), https://doi.org/10.1007/s10033-017-0121-5. [CrossRef] [Google Scholar]
- C. Chen, Z. Guo, S. Li, et al., Microstructure and properties of WC-17Co cermets prepared using different processing routes, Ceram. Int. 45(7), 9203–9210 (2019), https://doi.org/10.1016/j.ceramint.2019.01.265 [CrossRef] [Google Scholar]
- Z. Roulon, J.M. Missiaen, S. Lay, Carbide grain growth in cemented carbides sintered with alternative binders, Int. J. Refract. Metals Hard Mater 86(Sep. 2019) 105088 (2020), https://doi.org/10.1016/j.ijrmhm.2019.105088 [CrossRef] [Google Scholar]
- H.M. Ortner, P. Ettmayer, H. Kolaska, et al., The history of the technological progress of hardmetals?, Int. J. Refract. Metals Hard Mater. 49(1), 3–8 (2015), https://doi.org/10.1016/j.ijrmhm.2014.04.016 [CrossRef] [Google Scholar]
- R.T. Faria, M.F. Rodrigues, I. de Andrade Esquef, et al., On the thermal characterization of a HPHT sintered WC-15%wt Co hardmetal alloy, Int. J. Refract. Metals Hard Mater. 23(2), 115–118 (2005), https://doi.org/10.1016/j.ijrmhm.2004.11.007 [CrossRef] [Google Scholar]
- A.S. Kurlov, A.A. Rempel’, Effect of sintering temperature on the phase composition and microhardness of WC-8 wt% Co cemented carbide, Inorgan. Mater. 43(6), 602–607 (2007), https://doi.org/10.1134/S002016850706009X [CrossRef] [Google Scholar]
- A. Aramian, S.M.J. Razavi, Z. Sadeghian, et al., A review of additive manufacturing of cermets, Addit. Manuf. 33(Jul. 2019), 101130 (2020), https://doi.org/10.1016/j.addma.2020.101130 [Google Scholar]
- Y. Yang, C. Zhang, D. Wang, et al., Additive manufacturing of WC-Co hardmetals: A review, Int. J. Adv. Manuf. Technol. 2020, 1653–1673 (2020) [CrossRef] [Google Scholar]
- A. Domashenkov, A. Borbély, I. Smurov, Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting, Mater. Manuf. Process. 32(1), 93–100 (2017), https://doi.org/10.1080/10426914.2016.1176195 [CrossRef] [Google Scholar]
- D. Bricin, A. Kriz, Processability of WC-CO powder mixtures using slm additive technology, MM Sci. J. 2019(June), 2939–2944 (2019), https://doi.org/10.17973/MMSJ2019_06_2018115 [CrossRef] [Google Scholar]
- D. Bricín, Z. Špirit, A. Kříž, Metallographic analysis of the suitability of a WC-Co powder blend for selective laser melting technology, Mater. Sci. Forum 919, 3–9 (2018), https://doi.org/10.4028/www.scientific.net/MSF.919.3 [CrossRef] [Google Scholar]
- E. Uhlmann, A. Bergmann, W. Gridin, Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting, Proc. CIRP 35, 8–15 (2015), https://doi.org/10.1016/j.procir.2015.08.060 [CrossRef] [Google Scholar]
- R.S. Khmyrov, V.A. Safronov, A.V. Gusarov, Obtaining crack-free WC-Co alloys by selective laser melting, Phys. Proc. 83, 874–881 (2016), https://doi.org/10.1016/j.phpro.2016.08.091 [CrossRef] [Google Scholar]
- T. Schwanekamp, Parameter study on laser beam melting of WC-Co at 800 °C pre-heating temperature, in: ICAT Proceedings of 7th International Conference on Additive Technologies, October 2019, pp. 78–84 [Google Scholar]
- Schwanekamp, Thermal post-treatment of additively manufactured WC-Co processed by Laser Powder Bed Fusion, 2019 [Google Scholar]
- T. Schwanekamp, M. Reuber, Additive manufacutring of application optimized tungsten carbide precision tools, in: 6th International Conference on Additive Technologies, January 2016, pp. 100–114, https://doi.org/10.1016/S0925-8388(03)00637-6 [Google Scholar]
- MAUD, http://maud.radiographema.eu/ [Google Scholar]
- H. Engqvist, B. Uhrenius, Determination of the average grain size of cemented carbides, Int. J. Refract. Metals Hard Mater. 21(1-2), 31–35 (2003), https://doi.org/10.1016/S0263-4368(03)00005-2 [CrossRef] [Google Scholar]
- AFNOR, NF EN ISO 4499 – Métaux durs – Détermination métallographique de la microstructure – Partie 2 : Mesurage de la taille des grains de WC, 2020 (last accessed: Feb. 13, 2023). [Online]. Available from https://viewerbdc.afnor.org/pdf/viewer/rb7Gn_okSoo1?proxy=true [Google Scholar]
- S. Luyckx, A. Love, The dependence of the contiguity of WC on Co content and its independence from WC grain size in WC-Co alloys, Int. J. Refract. Metals Hard Mater. 24(1-2), 75–79 (2006), https://doi.org/10.1016/j.ijrmhm.2005.04.012 [CrossRef] [Google Scholar]
- Hardmetals – Palmqvist toughness test – ISO 28079, 2009 [Google Scholar]
- B. Roebuck, E. Bennett, L. Lay, et al., Palmqvist toughness for hard and brittle materials measurement, Good Practice Guide 9, 48 (2008) [Google Scholar]
- L.N. Carter, M.M. Attallah, R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking, 2012 [Google Scholar]
- J.P. Oliveira, T.G. Santos, R.M. Miranda, Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice, Prog. Mater. Sci. 107(Jun. 2019), 100590 (2020), https://doi.org/10.1016/j.pmatsci.2019.100590 [CrossRef] [Google Scholar]
- K.G. Prashanth, S. Scudino, T. Maity, et al., Is the energy density a reliable parameter for materials synthesis by selective laser melting?, Mater. Res. Lett. 5(6), 386–390 (2017), https://doi.org/10.1080/21663831.2017.1299808 [CrossRef] [Google Scholar]
- L. Tonelli, A. Fortunato, L. Ceschini, CoCr alloy processed by selective laser melting (SLM): Effect of laser energy density on microstructure, surface morphology, and hardness, J. Manuf. Process. 52(Oct. 2019), 106–119 (2020), https://doi.org/10.1016/j.jmapro.2020.01.052 [CrossRef] [Google Scholar]
- C.J.R.G. Oliver, E.A. Álvarez, J.L. García, Kinetics of densification and grain growth in ultrafine WC-Co composites, Int. J. Refract. Metals Hard Mater. 59, 121–131 (2016), https://doi.org/10.1016/j.ijrmhm.2016.05.016 [CrossRef] [Google Scholar]
- R.S. Khmyrov, A.P. Shevchukov, A.V. Gusarov, et al., Phase composition and microstructure of WC-Co alloys obtained by selective laser melting, Mech. Ind. 18(7), (2017), https://doi.org/10.1051/meca/2017059 [Google Scholar]
- H. Ibe, Y. Kato, J. Yamada, et al., Controlling WC/Co two-phase microstructure of cemented carbides additive-manufactured by laser powder bed fusion: Effect of powder composition and post heat-treatment, Mater. Des. 210, 110034 (2021), https://doi.org/10.1016/j.matdes.2021.110034 [CrossRef] [Google Scholar]
- Y. Milman, S. Luyckx, I. Northrop, Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys, Int. J. Refract. Metals Hard Mater. 17(1-3), 39–44 (1999), https://doi.org/10.1016/S0263-4368(98)00038-9 [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.