Open Access
Issue |
Matériaux & Techniques
Volume 111, Number 3, 2023
|
|
---|---|---|
Article Number | 304 | |
Number of page(s) | 13 | |
Section | Materials production and processing | |
DOI | https://doi.org/10.1051/mattech/2023016 | |
Published online | 28 June 2023 |
- C.Y. Yap, C.K. Chua, Z.L. Dong, et al., Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2(4), (2015), https://doi.org/10.1063/1.4935926 [Google Scholar]
- E. Herderick, Additive manufacturing of metals: A review, Mater. Sci. Technol. Conf. Exhibit. 2011, MS and T’11 2(art. no. 176252), 1413–1425 (2011) [Google Scholar]
- N. Li, S. Huang, G. Zhang, et al., Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol. 35(2), 242–269 (2019), https://doi.org/10.1016/j.jmst.2018.09.002 [CrossRef] [Google Scholar]
- I. Gibson, B. Stucker, D. Rosen, Additive manufacturing technologies 3D printing, in: Rapid prototyping, and direct digital manufacturing, 2nd ed., 2019, https://doi.org/10.1007/978-1-4939-2113-3 [Google Scholar]
- C.Y. Zhang, Y.P. Ren, X.S. Chen, The development situation of selective laser melting metal powder based on 3D printing, Appl. Mech. Mater. 518, 12–18 (2014), https://doi.org/10.4028/www.scientific.net/AMM.518.12 [CrossRef] [Google Scholar]
- S. Vock, B. Klöden, A. Kirchner, et al., Powders for powder bed fusion: A review, Progr. Addit. Manuf. 4(4), 383–397 (2019), https://doi.org/10.1007/s40964-019-00078-6 [CrossRef] [Google Scholar]
- B. Zhang, Y. Li, Q. Bai, Defect formation mechanisms in selective laser melting: A review, Chin. J. Mech. Eng. (English Ed.) 30(3), 515–527 (2017), https://doi.org/10.1007/s10033-017-0121-5. [CrossRef] [Google Scholar]
- C. Chen, Z. Guo, S. Li, et al., Microstructure and properties of WC-17Co cermets prepared using different processing routes, Ceram. Int. 45(7), 9203–9210 (2019), https://doi.org/10.1016/j.ceramint.2019.01.265 [CrossRef] [Google Scholar]
- Z. Roulon, J.M. Missiaen, S. Lay, Carbide grain growth in cemented carbides sintered with alternative binders, Int. J. Refract. Metals Hard Mater 86(Sep. 2019) 105088 (2020), https://doi.org/10.1016/j.ijrmhm.2019.105088 [CrossRef] [Google Scholar]
- H.M. Ortner, P. Ettmayer, H. Kolaska, et al., The history of the technological progress of hardmetals?, Int. J. Refract. Metals Hard Mater. 49(1), 3–8 (2015), https://doi.org/10.1016/j.ijrmhm.2014.04.016 [CrossRef] [Google Scholar]
- R.T. Faria, M.F. Rodrigues, I. de Andrade Esquef, et al., On the thermal characterization of a HPHT sintered WC-15%wt Co hardmetal alloy, Int. J. Refract. Metals Hard Mater. 23(2), 115–118 (2005), https://doi.org/10.1016/j.ijrmhm.2004.11.007 [CrossRef] [Google Scholar]
- A.S. Kurlov, A.A. Rempel’, Effect of sintering temperature on the phase composition and microhardness of WC-8 wt% Co cemented carbide, Inorgan. Mater. 43(6), 602–607 (2007), https://doi.org/10.1134/S002016850706009X [CrossRef] [Google Scholar]
- A. Aramian, S.M.J. Razavi, Z. Sadeghian, et al., A review of additive manufacturing of cermets, Addit. Manuf. 33(Jul. 2019), 101130 (2020), https://doi.org/10.1016/j.addma.2020.101130 [Google Scholar]
- Y. Yang, C. Zhang, D. Wang, et al., Additive manufacturing of WC-Co hardmetals: A review, Int. J. Adv. Manuf. Technol. 2020, 1653–1673 (2020) [CrossRef] [Google Scholar]
- A. Domashenkov, A. Borbély, I. Smurov, Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting, Mater. Manuf. Process. 32(1), 93–100 (2017), https://doi.org/10.1080/10426914.2016.1176195 [CrossRef] [Google Scholar]
- D. Bricin, A. Kriz, Processability of WC-CO powder mixtures using slm additive technology, MM Sci. J. 2019(June), 2939–2944 (2019), https://doi.org/10.17973/MMSJ2019_06_2018115 [CrossRef] [Google Scholar]
- D. Bricín, Z. Špirit, A. Kříž, Metallographic analysis of the suitability of a WC-Co powder blend for selective laser melting technology, Mater. Sci. Forum 919, 3–9 (2018), https://doi.org/10.4028/www.scientific.net/MSF.919.3 [CrossRef] [Google Scholar]
- E. Uhlmann, A. Bergmann, W. Gridin, Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting, Proc. CIRP 35, 8–15 (2015), https://doi.org/10.1016/j.procir.2015.08.060 [CrossRef] [Google Scholar]
- R.S. Khmyrov, V.A. Safronov, A.V. Gusarov, Obtaining crack-free WC-Co alloys by selective laser melting, Phys. Proc. 83, 874–881 (2016), https://doi.org/10.1016/j.phpro.2016.08.091 [CrossRef] [Google Scholar]
- T. Schwanekamp, Parameter study on laser beam melting of WC-Co at 800 °C pre-heating temperature, in: ICAT Proceedings of 7th International Conference on Additive Technologies, October 2019, pp. 78–84 [Google Scholar]
- Schwanekamp, Thermal post-treatment of additively manufactured WC-Co processed by Laser Powder Bed Fusion, 2019 [Google Scholar]
- T. Schwanekamp, M. Reuber, Additive manufacutring of application optimized tungsten carbide precision tools, in: 6th International Conference on Additive Technologies, January 2016, pp. 100–114, https://doi.org/10.1016/S0925-8388(03)00637-6 [Google Scholar]
- MAUD, http://maud.radiographema.eu/ [Google Scholar]
- H. Engqvist, B. Uhrenius, Determination of the average grain size of cemented carbides, Int. J. Refract. Metals Hard Mater. 21(1-2), 31–35 (2003), https://doi.org/10.1016/S0263-4368(03)00005-2 [CrossRef] [Google Scholar]
- AFNOR, NF EN ISO 4499 – Métaux durs – Détermination métallographique de la microstructure – Partie 2 : Mesurage de la taille des grains de WC, 2020 (last accessed: Feb. 13, 2023). [Online]. Available from https://viewerbdc.afnor.org/pdf/viewer/rb7Gn_okSoo1?proxy=true [Google Scholar]
- S. Luyckx, A. Love, The dependence of the contiguity of WC on Co content and its independence from WC grain size in WC-Co alloys, Int. J. Refract. Metals Hard Mater. 24(1-2), 75–79 (2006), https://doi.org/10.1016/j.ijrmhm.2005.04.012 [CrossRef] [Google Scholar]
- Hardmetals – Palmqvist toughness test – ISO 28079, 2009 [Google Scholar]
- B. Roebuck, E. Bennett, L. Lay, et al., Palmqvist toughness for hard and brittle materials measurement, Good Practice Guide 9, 48 (2008) [Google Scholar]
- L.N. Carter, M.M. Attallah, R.C. Reed, Laser powder bed fabrication of nickel-base superalloys: Influence of parameters; characterisation, quantification and mitigation of cracking, 2012 [Google Scholar]
- J.P. Oliveira, T.G. Santos, R.M. Miranda, Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice, Prog. Mater. Sci. 107(Jun. 2019), 100590 (2020), https://doi.org/10.1016/j.pmatsci.2019.100590 [CrossRef] [Google Scholar]
- K.G. Prashanth, S. Scudino, T. Maity, et al., Is the energy density a reliable parameter for materials synthesis by selective laser melting?, Mater. Res. Lett. 5(6), 386–390 (2017), https://doi.org/10.1080/21663831.2017.1299808 [CrossRef] [Google Scholar]
- L. Tonelli, A. Fortunato, L. Ceschini, CoCr alloy processed by selective laser melting (SLM): Effect of laser energy density on microstructure, surface morphology, and hardness, J. Manuf. Process. 52(Oct. 2019), 106–119 (2020), https://doi.org/10.1016/j.jmapro.2020.01.052 [CrossRef] [Google Scholar]
- C.J.R.G. Oliver, E.A. Álvarez, J.L. García, Kinetics of densification and grain growth in ultrafine WC-Co composites, Int. J. Refract. Metals Hard Mater. 59, 121–131 (2016), https://doi.org/10.1016/j.ijrmhm.2016.05.016 [CrossRef] [Google Scholar]
- R.S. Khmyrov, A.P. Shevchukov, A.V. Gusarov, et al., Phase composition and microstructure of WC-Co alloys obtained by selective laser melting, Mech. Ind. 18(7), (2017), https://doi.org/10.1051/meca/2017059 [Google Scholar]
- H. Ibe, Y. Kato, J. Yamada, et al., Controlling WC/Co two-phase microstructure of cemented carbides additive-manufactured by laser powder bed fusion: Effect of powder composition and post heat-treatment, Mater. Des. 210, 110034 (2021), https://doi.org/10.1016/j.matdes.2021.110034 [CrossRef] [Google Scholar]
- Y. Milman, S. Luyckx, I. Northrop, Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys, Int. J. Refract. Metals Hard Mater. 17(1-3), 39–44 (1999), https://doi.org/10.1016/S0263-4368(98)00038-9 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.