Open Access
Numéro
Matériaux & Techniques
Volume 110, Numéro 3, 2022
Numéro d'article 301
Nombre de pages 7
Section Sélection des matériaux et des procédés / Materials and processes selection
DOI https://doi.org/10.1051/mattech/2022027
Publié en ligne 20 juillet 2022
  1. E. Witten, V. Mathes, M. Sauer, et al., Composites Market Report 2018, Market developments, trends, outlooks and challenges, 2018 [Google Scholar]
  2. H. Bel Haj Frej, Recovery and reuse of carbon fibre and acrylic resin from thermoplastic composites used in marine application, 2020 [Google Scholar]
  3. N.J. Capiati, R.S. Porter, The concept of one polymer composites modelled with high density polyethylene, J. Mater. Sci. 10(10), 1671–1677 (1975) [CrossRef] [Google Scholar]
  4. N. Cabrera, B. Alcock, J. Loos, et al., Processing of all-polypropylene composites for ultimate recyclability, Proc. MECH E Part J. Mater. Appl. 218(2), 145–155 (2004) [Google Scholar]
  5. T. Bárány, A. Izer, A. Menyhárd, Reprocessability and melting behaviour of self-reinforced composites based on PP homo and copolymers, J. Therm. Anal. Calorim. 101(1), 255–263 (2010) [CrossRef] [Google Scholar]
  6. C.M. Wu, P.C. Lin, R. Murakami, Long-term creep behavior of self-reinforced PET composites, Express Polym. Lett. 11(10), 820–831 (2017) [CrossRef] [Google Scholar]
  7. B.M. Weager, et al., Development of recyclable self-reinforced polypropylene parts for automotive applications, Int. J. Veh. Des. 44(3/4), 293 (2007) [CrossRef] [Google Scholar]
  8. T. Xu, R.J. Farris, Shapeable matrix-free Spectra® fiber-reinforced polymeric composites via high-temperature high-pressure sintering: Process-structure-property relationship, J. Polym. Sci. Part B Polym. Phys. 43(19), 2767–2789 (2005) [CrossRef] [Google Scholar]
  9. I.M. Ward, P.J. Hine, The science and technology of hot compaction, Polymer 45(5), 1413–1427 (2004) [CrossRef] [Google Scholar]
  10. D. Zherebtsov, et al., On the structural peculiarities of self-reinforced composite materials based on UHMWPE fibers, Polymers 13(9), 1408 (2021) [CrossRef] [Google Scholar]
  11. J. Karger-Kocsis, T. Bárány, Single-polymer composites (SPCs): Status and future trends, Compos. Sci. Technol. 92, 77–94 (2014) [CrossRef] [Google Scholar]
  12. J. Loos, T. Schimanski, J. Hofman, et al., Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites, Polymer 42(8), 3827–3834 (2001) [CrossRef] [Google Scholar]
  13. A. Ajji, A. Ait-Kadi, A. Rochette, Polyethylene-ultra high modulus polyethylene short fibers composites, J. Compos. Mater. 26(1), 121–131 (1992) [CrossRef] [Google Scholar]
  14. Y. Cohen, D.M. Rein, L. Vaykhansky, A novel composite based on ultra-high-molecular-weight polyethylene, Compos. Sci. Technol. 57(8), 1149–1154 (1997) [CrossRef] [Google Scholar]
  15. C. Schneider, S. Kazemahvazi, M. Åkermo, et al., Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites, Polym. Test. 32(2), 221–230 (2013) [CrossRef] [Google Scholar]
  16. P. Rojanapitayakorn, P.T. Mather, A.J. Goldberg, et al., Optically transparent self-reinforced poly(ethylene terephthalate) composites: molecular orientation and mechanical properties, Polymer 46(3), 761–773 (2005) [CrossRef] [Google Scholar]
  17. C. Roiron, E. Lainé, J.-C. Grandidier, et al., A review of the mechanical and physical properties of polyethylene fibers, Textiles 1(1), 86–151 (2021) [CrossRef] [Google Scholar]
  18. C. Roiron, E. Lainé, J.-C. Grandidier, et al., Evaluation of the creep behavior of a SRPE (Self-Reinforced PolyEthylene) over the long-term, Composites Part A, (2022) [Google Scholar]
  19. C. Roiron, E. Lainé, J.-C. Grandidier, et al., Correlation between thermomechanical behavior and density of UHMWPE (Ultra-High Molecular Weight PolyEthylene) reinforcements embedded in self-reinforced composites, following a parametric study of the process used, J. Polym. Res. 28(9), (2021) [CrossRef] [Google Scholar]
  20. Á. Kmetty, T. Bárány, J. Karger-Kocsis, Self-reinforced polymeric materials: A review, Prog. Polym. Sci. 35(10), 1288–1310 (2010) [CrossRef] [Google Scholar]
  21. E. Lainé, C. Bouvy, J.-C. Grandidier, et al., Methodology of accelerated characterization for long-term creep prediction of polymer structures to ensure their service life, Polym. Test. 79, 106050 (2019) [CrossRef] [Google Scholar]
  22. C. G’Sell, J.M. Hiver, A. Dahoun, et al., Video-controlled tensile testing of polymers and metals beyond the necking point, J. Mater. Sci. 27(18), 5031–5039 (1992) [CrossRef] [Google Scholar]
  23. CReCoF (Comité Reyclage Composites France), Guide du recyclage des composites, 2017, [Online], Available from http://agrobiobase.com/sites/default/files/dossiers/fichiers/crecof-guide-du-recyclage-des-composites.pdf [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.