Numéro |
Matériaux & Techniques
Volume 109, Numéro 5-6, 2021
Special Issue on ‘Materials and Society: the circular economy, design for circularity and industrial symbiosis’, edited by Jean-Pierre Birat, Gaël Fick, Nicolas Perry, Andrea Declich, Leiv Kolbensein, Dominique Millet and Thecle Alix
|
|
---|---|---|
Numéro d'article | 504 | |
Nombre de pages | 12 | |
Section | Environnement - recyclage / Environment - recycling | |
DOI | https://doi.org/10.1051/mattech/2022014 | |
Publié en ligne | 4 mars 2022 |
- M. Chertow, Industrial symbiosis: Literature and taxonomy, Annu. Rev. Energy Environ. 25, 313–337 (2000) [CrossRef] [Google Scholar]
- D. Lombardi, P. Laybourn, Redefining industrial symbiosis: Crossing academic-practitioner boundaries, J. Ind. Ecol. 16, 28–37 (2012), https://doi.org/10.1111/j.1530-9290.2011.00444.x [CrossRef] [Google Scholar]
- European Committee for Standardization, Industrial symbiosis: Core elements and implementation, Workshop Agreement, 2018 [Google Scholar]
- A. Neves, R. Godina, S.G. Azevedo, et al., The potential of industrial symbiosis: Case analysis and main drivers and barriers to its implementation, Sustainability 11, 7095 (2019) [CrossRef] [Google Scholar]
- European Commission, Closing the Loop – An EU Action Plan for the Circular Economy – COM (2015) 614 Final, European Commission, Brussels, Belgium, 2015 [Google Scholar]
- European Commission, Circular Economy Action Plan. For a cleaner and more competitive Europe, European Commission, Brussels, Belgium, 2020 [Google Scholar]
- European Commission, Communication No. 640, 2019. The European Green Deal; (COM No. 640, 2019), Commission of European Communities, Brussels, Belgium, 2019 [Google Scholar]
- European Commission, Roadmap to a resource efficient Europe, Bruxelles, 2011 [Google Scholar]
- L. Fraccascia, M. Magno, V. Albino, Business models for industrial symbiosis: a guide for firms, Proc. Environ. Sci. Eng. Manage. 3(2), 83–93 (2016) [Google Scholar]
- W. Jiao, F. Boons, Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review, J. Clean. Prod., 14–25 (2014) [CrossRef] [Google Scholar]
- H. Cervo, J.-H. Ferrasse, B. Descales, et al., Blueprint: A methodology facilitating data exchanges to enhance the detection of industrial symbiosis opportunities – Application to a refinery, Chem. Eng. Sci. 211 (2020), https://doi.org/10.1016/j.ces.2019.115254 [CrossRef] [Google Scholar]
- T.A. Branca, B. Fornai, V. Colla, et al., The challenge of digitalization in the steel sector, Metals 10(2), 288 (2020) [Google Scholar]
- S. Rosendahl, K. Lundkvist, B. Haase, et al., Establishing an industrial symbiosis – Key factors and time aspects in steel industry, Matériaux & Techniques 107, 508 (2019) [Google Scholar]
- T.A. Branca, V. Colla, D. Algermissen, et al., Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe, Metals 10, 345 (2020) [Google Scholar]
- P. Ranya, P. Nagarajan, A. Shashikala, Eco-friendly Ggbs concrete: A state-of-the-art review, in: IOP Conference Series, Materials Science and Engineering, IOP Publishing, Bristol, UK, 012057 (2018) [Google Scholar]
- T.A. Branca, C. Pistocchi, V. Colla, et al., Investigation of (BOF) converter slag use for agriculture in Europe. Rev. Metall. Int. J. Metall. 111, 155–167 (2014) [Google Scholar]
- European Aluminium, Circular Aluminium Action Plan: A strategy for achieving aluminium’s full potential for Circular Economy by 2030, 2020 [Google Scholar]
- Cerame-Unie, Ceramic Industry Roadmap: Paving the way to 2050, The European Ceramic Industry Association, 2012 [Google Scholar]
- W. Sancassiani, The ceramic product and production process and the Circular Economy, (2019) [Google Scholar]
- International Energy Agency, Key world energy statistics, 2017 [Google Scholar]
- International Energy Agency, CO2 emissions from fuel combustion, 2017 [Google Scholar]
- International Energy Agency, Global energy & CO2 status report, 2018 [Google Scholar]
- Fossil fuels still supply 84 percent of World energy – And other eye openers from BP’s Annual Review, 2020 [Google Scholar]
- Field CB, Barros VR, eds, Climate change 2014 – Impacts, adaptation and vulnerability: Regional aspects, Cambridge University Press, 2014 [CrossRef] [Google Scholar]
- European Commission, Energy efficiency plan 2011, Brussels, 2011 [Google Scholar]
- J. Rogelj, M. den Elzen, N. Höhne, et al., Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016) [CrossRef] [PubMed] [Google Scholar]
- International Energy Agency, Energy technology perspectives: Scenarios & strategies to 2050, 2010, https://doi.org/10.1049/et:20060114 [Google Scholar]
- European Commission, Roadmap for moving to a competitive low-carbon economy in 2050, 2011 [Google Scholar]
- European Commission, Energy roadmap 2050, 2012 [Google Scholar]
- European Commission, Communication No. 2020, Europe 2020 – A Strategy for smart, sustainable and inclusive growth (COM No. 2020, 2010), Commission of European Communities, Brussels, Belgium, 2010 [Google Scholar]
- J. Malinauskaite, H. Jouhara, L. Ahmad, et al., Energy efficiency in industry: EU and national policies in Italy and the UK, Energy 172, 255–269 (2019) [CrossRef] [Google Scholar]
- ICF International, Study on energy efficiency and energy saving potential in industry and on possible policy mechanisms, 2015 [Google Scholar]
- K. He, L. Wang, A review of energy use and energy-efficient technologies for the iron and steel industry, Renew. Sustain. Energy Rev. 70, 1022–1039 (2017) [CrossRef] [Google Scholar]
- I. Matino, S. Dettori, A. Castellano, et al., Machine learning-based models for supporting optimal exploitation of process off-gases in integrated steelworks, in: Advances in Intelligent Systems and Computing, 1338, Springer, Cham, 2021, https://doi.org/10.1007/978-3-030-69367-1_9 [Google Scholar]
- I. Matino, S. Dettori, V. Colla, et al., Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management, Appl. Energy 253, 113578 (2019), https://doi.org/10.1016/j.apenergy.2019.113578 [CrossRef] [Google Scholar]
- V. Colla, I. Matino, S. Dettori, et al., Assessing the efficiency of the off-gas network management in integrated steelworks, Matériaux & Techniques 107(1), 104 (2019) [Google Scholar]
- V. Colla, I. Matino, F. Cirilli, et al., Improving energy and resource efficiency of electric steelmaking through simulation tools and process data analyses, Matériaux & Techniques 104(6-7), 602 (2016) [Google Scholar]
- I. Matino, V. Colla, S. Baragiola, Electric energy consumption and environmental impact in unconventional EAF steelmaking scenarios, Energy Proc. 105, 3636–3641 (2017) [Google Scholar]
- I. Matino, V. Colla, S. Baragiola, Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability, Appl. Energy 207, 543–552 (2017) [CrossRef] [Google Scholar]
- J.A. Curry, M.J. Ismay, G.J. Jameson, Mine operating costs and the potential impacts of energy and grinding, Miner. Eng. 56, 70–80 (2014) [CrossRef] [Google Scholar]
- B. McLellan, G. Corder, D. Giurco, et al., Renewable energy in the minerals industry: A review of global potential, J. Clean. Prod. 32, 32–44 (2012) [CrossRef] [Google Scholar]
- F. Schorcht, I. Kourti, B.M. Scalet, et al., Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide, European Commission Joint Research Centre Institute for Prospective Technological Studies, Luxembourg, 2013 [Google Scholar]
- A. Mokhtar, M. Nasooti, A decision support tool for cement industry to select energy efficiency measures, Energy Strategy Rev. 28, 100458 (2020) [CrossRef] [Google Scholar]
- Industrial decarbonisation & energy efficiency roadmaps to 2050-Ceramic Sector, 2015 [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.