Open Access
Numéro
Matériaux & Techniques
Volume 107, Numéro 3, 2019
Numéro d'article 303
Nombre de pages 12
Section Environnement - recyclage / Environment - recycling
DOI https://doi.org/10.1051/mattech/2019021
Publié en ligne 4 juin 2019
  1. K.H. Yang, Y.B. Jung, M.S. Cho, S.H. Tae, Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete, J. Clean. Prod. 103, 774–783 (2015) [CrossRef] [Google Scholar]
  2. W. Al-Kutti, M. Nasir, M.A.M. Johari, A.B.M. Saiful Islam, A.A. Manda, N.I. Blaisi, An overview and experimental study on hybrid binders containing datepalm ash, fly ash, OPC and activator composites, Constr. Build. Mater. 159, 567–577 (2018) [CrossRef] [Google Scholar]
  3. T. Hanein, J.L. Galvez-Martos, M.N. Bannerman, Carbon footprint of calcium sulfoaluminate clinker production, J. Clean. Prod. 172, 2278–2287 (2018) [CrossRef] [Google Scholar]
  4. N.D. Lagaros, The environmental and economic impact of structural optimization, Struct. Multidiscip. Optim. 58(4), 1751–1768 (2018) [CrossRef] [Google Scholar]
  5. U. Environment, K.L. Scrivenera, V.M. Johnb, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. (2018), DOI: 10.1016/j.cemconres.2018.03.015 [Google Scholar]
  6. K.L. Scrivener, A. Nonat, Hydration of cementitious materials, present and future, Cem. Concr. Res. 41, 651–665 (2011) [CrossRef] [Google Scholar]
  7. D.P. Bentz, C.F. Ferraris, S.Z. Jones, D. Lootens, F. Zunino, Limestone and silica powder replacements for cement: Early-age 350 performance, Cem. Concr. Compos. 78, 43–56 (2017) [CrossRef] [Google Scholar]
  8. S. Bechar, D. Zerrouki, Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well, World J. Eng. 15(4), 513–519 (2018) [CrossRef] [Google Scholar]
  9. A. Terzić, L. Pezo, N. Mijatović, J. Stojanović, M. Kragović, L. Miliĉić, L. Andric, The effect of alternations in mineral additives (zeolite, bentonite, fly ash) on physico-chemical behavior of Portland cement based binders, Constr. Build. Mater. 180, 199–210 (2018) [CrossRef] [Google Scholar]
  10. I.G. Braz, M.C. Shinzato, T.J. Montanheiro, T.M. de Almeida, F.M. de Souza Carvalho, Effect of the addition of aluminum recycling waste on the pozzolanic activity of sugarcane bagasse ash and zeolite, Waste Biomass Valoriz., 1–21 (2018) [Google Scholar]
  11. N.A. Ulload, H. Baykara, M.H. Cornejo, A. Rigail, C. Paredes, J.L. Villalba, Application-oriented mix design optimization and characterization of zeolite-based geopolymer mortars, Constr. Build. Mater. 174, 138–149 (2018) [CrossRef] [Google Scholar]
  12. M. Sedlmajer, J. Zach, J. Hroudová, P. Rovnaníková, Possibilities of utilization zeolite in concrete, Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 9(5), 525–528 (2015) [Google Scholar]
  13. H. Baykara, M.H. Cornejo, R. Murillo, A. Gavilanes, C. Paredes, J. Elsen, Preparation, characterization and reaction kinetics of green cement: Ecuadorian natural mordenite-based geopolymers, Mater. Struct. 50(3), 1–12 (2017) [CrossRef] [Google Scholar]
  14. A.U. Elinwa, M. Umar, X-ray diffraction and microstructure studies of gum Arabic-cement concrete, Constr. Build. Mater. 156, 632–638 (2017) [CrossRef] [Google Scholar]
  15. D. Nagrockienė, G. Girskas, G. Skripkiūnas, Properties of concrete modified with mineral additives, Constr. Build. Mater. 135, 37–42 (2017) [CrossRef] [Google Scholar]
  16. D. Caputo, B. Liguori, C. Colella, Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure, Cem. Concr. Compos. 30, 455–462 (2008) [CrossRef] [Google Scholar]
  17. A. Itim, K. Ezziane, E.H. Kadri, Compressive strength and shrinkage of mortar containing various amounts of mineral additions, Constr. Build. Mater. 25, 3603–3609 (2011) [CrossRef] [Google Scholar]
  18. M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Constr. Build. Mater. 35, 1023–1033 (2012) [CrossRef] [Google Scholar]
  19. Y. Senhadji, G. Escadeillas, M. Mouli, H. Khelafi, Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar, Powder Technol. 254, 314–323 (2014) [CrossRef] [Google Scholar]
  20. V.F. Rahhal, Z. Pavlίk, A. Tironi, C.C. Castellano, M.A. Trezza, R. Černý, E.F. Irassar, Effect of cement composition on the early hydration of blended cements with natural zeolite, J. Therm. Anal. Calorim. 128(2), 721–733 (2017) [CrossRef] [Google Scholar]
  21. NF EN 197-1, Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, Comité européen de normalisation, Bruxelles, 2012 [Google Scholar]
  22. NF EN 196-1, Méthodes d’essais des ciments. Partie 1 : détermination des résistances mécaniques, Comité européen de normalisation, Bruxelles, 2016 [Google Scholar]
  23. NF P18-452, Mesure du temps d’écoulement des bétons et des mortiers aux maniabilimétres, AFNOR, Paris, 1988 [Google Scholar]
  24. NF P15-433, Méthode d’essais des ciments. Détermination du retrait et du gonflement, AFNOR, Paris, 1994 [Google Scholar]
  25. AFPC-AFREM 11–12 Compte-Rendu des journées techniques. Durabilité des bétons, INSA, Toulouse, 1997 [Google Scholar]
  26. NF P18-414, Essai des bétons. Essais non destructifs. Mesure de la fréquence de résonance fondamentale, AFNOR, Paris, 2017 [Google Scholar]
  27. NF EN 196-3, Méthodes d’essais des ciments. Partie 3 : Détermination du temps de prise et de la stabilité, Comité européen de normalisation, Bruxelles, 1995 [Google Scholar]
  28. ACI 232. 1R-12, Report on the use of raw or processed natural pozzolans in concrete, American Concrete Institute, Farmington, USA, 2012 [Google Scholar]
  29. C.S. Shon, Y.S. Kim, Evaluation of west Texas natural zeolite as an alternative of ASTM Class F fly ash, Constr. Build. Mater. 47, 389–396 (2013) [CrossRef] [Google Scholar]
  30. V. Tydlitát, J. Zákoutsky, R. Cern, Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry, Thermochim. Acta 582, 53–58 (2014) [CrossRef] [Google Scholar]
  31. R. Snellings, G. Mertens, Ö. Cizer, J. Elsen, Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction, Cem. Concr. Res. 40, 1704–1713 (2010) [CrossRef] [Google Scholar]
  32. E. Vejmelková, D. Konakova, T. Kulovaná, M. Keppert, J. Zumar, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance, Cem. Concr. Compos. 55, 259–267 (2015) [CrossRef] [Google Scholar]
  33. S.M. Monteagudo, A. Moragues, J.C. Gálvez, M.J. Casati, E. Reyes, “The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases”, Thermochim. Acta 592, 37–51 (2014) [CrossRef] [Google Scholar]
  34. E. Kontori, T. Perraki, S. Tsivilis, G. Kakali, Zeolite blended cements: Evaluation of their hydration rate by means of thermal analysis, J. Therm. Anal. Calorim. 96, 993–998 (2009) [CrossRef] [Google Scholar]
  35. T. Perraki, G. Kakali, F. Kontoleon, The effect of natural zeolites on the early hydration of Portland cement, Microporous Mesoporous Mater. 61, 205–212 (2003) [CrossRef] [Google Scholar]
  36. B. Drzaj, S. Hocevar, M. Slokan, A. Zajc, Kinetics and mechanism of reaction in the zeolitic tuff-CaO-H2O systems at increased temperature, Cem. Concr. Res. 8, 711–720 (1978) [CrossRef] [Google Scholar]
  37. D. Jana, A new look to an old pozzolan: Clinoptilolite - A promising pozzolan in concrete, Proceedings Conference of the Twenty-ninth Conference on Cement Microscopy, Quebec, 2007 [Google Scholar]
  38. D. Richard, A. Helmuth, J. Rachel, The nature of concrete, in: J.F. Lamond, J.H. Pielert (Eds.), Significance of testes and properties of concrete and concrete-making materials STP 169D, ASTM International, 2006 [Google Scholar]
  39. I. Messaoudene, L. Molez, D. Rangeard, R. Jauberthie, A. Naceri, Mortiers à base de sable pliocène et de ciments aux ajouts : fillers de déchets industriels et cendres volcaniques, Matériaux & Techniques 100, 377–386 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  40. Y. Kocak, E. Tascı, U. Kaya, The effect of using natural zeolite on the properties and hydration characteristics of blended cements, Constr. Build. Mater. 47, 720–727 (2013) [CrossRef] [Google Scholar]
  41. R. Siddique, Effect of volcanic ash on the properties of cement paste and mortar, Resour. Conserv. Recycl. 56, 66–70 (2011) [CrossRef] [Google Scholar]
  42. T.K. Erdem, C. Meral, M. Tokyay, T.Y. Erdogan, Use of perlite as a pozzolanic addition in producing blended cements, Cem. Concr. Compos. 29, 13–21 (2007) [CrossRef] [Google Scholar]
  43. M.J. Shannag, High strength concrete containing natural pozzolan and silica fume, Cem. Concr. Compos. 22, 399–406 (2000) [CrossRef] [Google Scholar]
  44. M. Benaissa, K. Bendania, N. Belas, K. Belguesmia, H. Missoum, Influence of adding bentonite on mortars and self-compacting concrete properties, Matériaux & Techniques 104, 12 (2016) [Google Scholar]
  45. M. Bibi, M.A. Chikouche, K. Ait Tahar, Influence of sandy or/and muddy clay additions, on the properties of materials cementing, Matériaux &Techniques 96, 165–172 (2008) [Google Scholar]
  46. T. Perraki, E. Kontori, S. Tsivilis, G. Kakali, The effect of zeolite on the properties and hydration of blended cements, Cem. Concr. Compos. 32, 128–133 (2010) [CrossRef] [Google Scholar]
  47. FD P 15-010 Liants hydrauliques. Guide d’utilisation des ciments, AFNOR, 1997 [Google Scholar]
  48. L.G. Li, A.K.H. Kwan, Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete, Cem. Concr. Compos. 60, 17–24 (2015) [CrossRef] [Google Scholar]
  49. I. Odler, Hydration, setting and hardening of Portland cement, in: P.C. Hewlett (Ed.), Lea’s chemestry of cement and concrete, Elsevier B, Oxford, UK, 1988 [Google Scholar]
  50. C. Poon, L. Lam, S. Kou, Z. Lin, A study on the hydration rate of natural zeolite blended cement pastes, Constr. Build. Mater. 13, 427–432 (1999) [CrossRef] [Google Scholar]
  51. B. Uzal, L. Turanlı, Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure, Cem. Concr. Compos. 34, 101–109 (2012) [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.