Open Access
Matériaux & Techniques
Volume 107, Number 3, 2019
Article Number 303
Number of page(s) 12
Section Environnement - recyclage / Environment - recycling
Published online 04 June 2019
  1. K.H. Yang, Y.B. Jung, M.S. Cho, S.H. Tae, Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete, J. Clean. Prod. 103, 774–783 (2015) [CrossRef] [Google Scholar]
  2. W. Al-Kutti, M. Nasir, M.A.M. Johari, A.B.M. Saiful Islam, A.A. Manda, N.I. Blaisi, An overview and experimental study on hybrid binders containing datepalm ash, fly ash, OPC and activator composites, Constr. Build. Mater. 159, 567–577 (2018) [CrossRef] [Google Scholar]
  3. T. Hanein, J.L. Galvez-Martos, M.N. Bannerman, Carbon footprint of calcium sulfoaluminate clinker production, J. Clean. Prod. 172, 2278–2287 (2018) [CrossRef] [Google Scholar]
  4. N.D. Lagaros, The environmental and economic impact of structural optimization, Struct. Multidiscip. Optim. 58(4), 1751–1768 (2018) [CrossRef] [Google Scholar]
  5. U. Environment, K.L. Scrivenera, V.M. Johnb, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. (2018), DOI: 10.1016/j.cemconres.2018.03.015 [Google Scholar]
  6. K.L. Scrivener, A. Nonat, Hydration of cementitious materials, present and future, Cem. Concr. Res. 41, 651–665 (2011) [CrossRef] [Google Scholar]
  7. D.P. Bentz, C.F. Ferraris, S.Z. Jones, D. Lootens, F. Zunino, Limestone and silica powder replacements for cement: Early-age 350 performance, Cem. Concr. Compos. 78, 43–56 (2017) [CrossRef] [Google Scholar]
  8. S. Bechar, D. Zerrouki, Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well, World J. Eng. 15(4), 513–519 (2018) [CrossRef] [Google Scholar]
  9. A. Terzić, L. Pezo, N. Mijatović, J. Stojanović, M. Kragović, L. Miliĉić, L. Andric, The effect of alternations in mineral additives (zeolite, bentonite, fly ash) on physico-chemical behavior of Portland cement based binders, Constr. Build. Mater. 180, 199–210 (2018) [CrossRef] [Google Scholar]
  10. I.G. Braz, M.C. Shinzato, T.J. Montanheiro, T.M. de Almeida, F.M. de Souza Carvalho, Effect of the addition of aluminum recycling waste on the pozzolanic activity of sugarcane bagasse ash and zeolite, Waste Biomass Valoriz., 1–21 (2018) [Google Scholar]
  11. N.A. Ulload, H. Baykara, M.H. Cornejo, A. Rigail, C. Paredes, J.L. Villalba, Application-oriented mix design optimization and characterization of zeolite-based geopolymer mortars, Constr. Build. Mater. 174, 138–149 (2018) [CrossRef] [Google Scholar]
  12. M. Sedlmajer, J. Zach, J. Hroudová, P. Rovnaníková, Possibilities of utilization zeolite in concrete, Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 9(5), 525–528 (2015) [Google Scholar]
  13. H. Baykara, M.H. Cornejo, R. Murillo, A. Gavilanes, C. Paredes, J. Elsen, Preparation, characterization and reaction kinetics of green cement: Ecuadorian natural mordenite-based geopolymers, Mater. Struct. 50(3), 1–12 (2017) [CrossRef] [Google Scholar]
  14. A.U. Elinwa, M. Umar, X-ray diffraction and microstructure studies of gum Arabic-cement concrete, Constr. Build. Mater. 156, 632–638 (2017) [CrossRef] [Google Scholar]
  15. D. Nagrockienė, G. Girskas, G. Skripkiūnas, Properties of concrete modified with mineral additives, Constr. Build. Mater. 135, 37–42 (2017) [CrossRef] [Google Scholar]
  16. D. Caputo, B. Liguori, C. Colella, Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure, Cem. Concr. Compos. 30, 455–462 (2008) [CrossRef] [Google Scholar]
  17. A. Itim, K. Ezziane, E.H. Kadri, Compressive strength and shrinkage of mortar containing various amounts of mineral additions, Constr. Build. Mater. 25, 3603–3609 (2011) [CrossRef] [Google Scholar]
  18. M. Najimi, J. Sobhani, B. Ahmadi, M. Shekarchi, An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Constr. Build. Mater. 35, 1023–1033 (2012) [CrossRef] [Google Scholar]
  19. Y. Senhadji, G. Escadeillas, M. Mouli, H. Khelafi, Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar, Powder Technol. 254, 314–323 (2014) [CrossRef] [Google Scholar]
  20. V.F. Rahhal, Z. Pavlίk, A. Tironi, C.C. Castellano, M.A. Trezza, R. Černý, E.F. Irassar, Effect of cement composition on the early hydration of blended cements with natural zeolite, J. Therm. Anal. Calorim. 128(2), 721–733 (2017) [CrossRef] [Google Scholar]
  21. NF EN 197-1, Ciment - Partie 1 : composition, spécifications et critères de conformité des ciments courants, Comité européen de normalisation, Bruxelles, 2012 [Google Scholar]
  22. NF EN 196-1, Méthodes d’essais des ciments. Partie 1 : détermination des résistances mécaniques, Comité européen de normalisation, Bruxelles, 2016 [Google Scholar]
  23. NF P18-452, Mesure du temps d’écoulement des bétons et des mortiers aux maniabilimétres, AFNOR, Paris, 1988 [Google Scholar]
  24. NF P15-433, Méthode d’essais des ciments. Détermination du retrait et du gonflement, AFNOR, Paris, 1994 [Google Scholar]
  25. AFPC-AFREM 11–12 Compte-Rendu des journées techniques. Durabilité des bétons, INSA, Toulouse, 1997 [Google Scholar]
  26. NF P18-414, Essai des bétons. Essais non destructifs. Mesure de la fréquence de résonance fondamentale, AFNOR, Paris, 2017 [Google Scholar]
  27. NF EN 196-3, Méthodes d’essais des ciments. Partie 3 : Détermination du temps de prise et de la stabilité, Comité européen de normalisation, Bruxelles, 1995 [Google Scholar]
  28. ACI 232. 1R-12, Report on the use of raw or processed natural pozzolans in concrete, American Concrete Institute, Farmington, USA, 2012 [Google Scholar]
  29. C.S. Shon, Y.S. Kim, Evaluation of west Texas natural zeolite as an alternative of ASTM Class F fly ash, Constr. Build. Mater. 47, 389–396 (2013) [CrossRef] [Google Scholar]
  30. V. Tydlitát, J. Zákoutsky, R. Cern, Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry, Thermochim. Acta 582, 53–58 (2014) [CrossRef] [Google Scholar]
  31. R. Snellings, G. Mertens, Ö. Cizer, J. Elsen, Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction, Cem. Concr. Res. 40, 1704–1713 (2010) [CrossRef] [Google Scholar]
  32. E. Vejmelková, D. Konakova, T. Kulovaná, M. Keppert, J. Zumar, Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance, Cem. Concr. Compos. 55, 259–267 (2015) [CrossRef] [Google Scholar]
  33. S.M. Monteagudo, A. Moragues, J.C. Gálvez, M.J. Casati, E. Reyes, “The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases”, Thermochim. Acta 592, 37–51 (2014) [CrossRef] [Google Scholar]
  34. E. Kontori, T. Perraki, S. Tsivilis, G. Kakali, Zeolite blended cements: Evaluation of their hydration rate by means of thermal analysis, J. Therm. Anal. Calorim. 96, 993–998 (2009) [CrossRef] [Google Scholar]
  35. T. Perraki, G. Kakali, F. Kontoleon, The effect of natural zeolites on the early hydration of Portland cement, Microporous Mesoporous Mater. 61, 205–212 (2003) [CrossRef] [Google Scholar]
  36. B. Drzaj, S. Hocevar, M. Slokan, A. Zajc, Kinetics and mechanism of reaction in the zeolitic tuff-CaO-H2O systems at increased temperature, Cem. Concr. Res. 8, 711–720 (1978) [CrossRef] [Google Scholar]
  37. D. Jana, A new look to an old pozzolan: Clinoptilolite - A promising pozzolan in concrete, Proceedings Conference of the Twenty-ninth Conference on Cement Microscopy, Quebec, 2007 [Google Scholar]
  38. D. Richard, A. Helmuth, J. Rachel, The nature of concrete, in: J.F. Lamond, J.H. Pielert (Eds.), Significance of testes and properties of concrete and concrete-making materials STP 169D, ASTM International, 2006 [Google Scholar]
  39. I. Messaoudene, L. Molez, D. Rangeard, R. Jauberthie, A. Naceri, Mortiers à base de sable pliocène et de ciments aux ajouts : fillers de déchets industriels et cendres volcaniques, Matériaux & Techniques 100, 377–386 (2012) [CrossRef] [EDP Sciences] [Google Scholar]
  40. Y. Kocak, E. Tascı, U. Kaya, The effect of using natural zeolite on the properties and hydration characteristics of blended cements, Constr. Build. Mater. 47, 720–727 (2013) [CrossRef] [Google Scholar]
  41. R. Siddique, Effect of volcanic ash on the properties of cement paste and mortar, Resour. Conserv. Recycl. 56, 66–70 (2011) [CrossRef] [Google Scholar]
  42. T.K. Erdem, C. Meral, M. Tokyay, T.Y. Erdogan, Use of perlite as a pozzolanic addition in producing blended cements, Cem. Concr. Compos. 29, 13–21 (2007) [CrossRef] [Google Scholar]
  43. M.J. Shannag, High strength concrete containing natural pozzolan and silica fume, Cem. Concr. Compos. 22, 399–406 (2000) [CrossRef] [Google Scholar]
  44. M. Benaissa, K. Bendania, N. Belas, K. Belguesmia, H. Missoum, Influence of adding bentonite on mortars and self-compacting concrete properties, Matériaux & Techniques 104, 12 (2016) [Google Scholar]
  45. M. Bibi, M.A. Chikouche, K. Ait Tahar, Influence of sandy or/and muddy clay additions, on the properties of materials cementing, Matériaux &Techniques 96, 165–172 (2008) [Google Scholar]
  46. T. Perraki, E. Kontori, S. Tsivilis, G. Kakali, The effect of zeolite on the properties and hydration of blended cements, Cem. Concr. Compos. 32, 128–133 (2010) [CrossRef] [Google Scholar]
  47. FD P 15-010 Liants hydrauliques. Guide d’utilisation des ciments, AFNOR, 1997 [Google Scholar]
  48. L.G. Li, A.K.H. Kwan, Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete, Cem. Concr. Compos. 60, 17–24 (2015) [CrossRef] [Google Scholar]
  49. I. Odler, Hydration, setting and hardening of Portland cement, in: P.C. Hewlett (Ed.), Lea’s chemestry of cement and concrete, Elsevier B, Oxford, UK, 1988 [Google Scholar]
  50. C. Poon, L. Lam, S. Kou, Z. Lin, A study on the hydration rate of natural zeolite blended cement pastes, Constr. Build. Mater. 13, 427–432 (1999) [CrossRef] [Google Scholar]
  51. B. Uzal, L. Turanlı, Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure, Cem. Concr. Compos. 34, 101–109 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.