Open Access
Numéro |
Matériaux & Techniques
Volume 106, Numéro 3, 2018
Assemblages Mécaniques / Mechanical Assemblies
|
|
---|---|---|
Numéro d'article | 308 | |
Nombre de pages | 12 | |
Section | Comportement en service / Behaviour in service | |
DOI | https://doi.org/10.1051/mattech/2018031 | |
Publié en ligne | 6 novembre 2018 |
- Norme Européenne, Conducteurs pour lignes aériennes – Conducteurs à brins circulaires, câblés en couches concentriques, NF EN 50182, 2001 [Google Scholar]
- P. Van Dyke, C. Hardy, M. St-Louis, J.-L. Gardes, Comparative field tests of various practices for the control of wind-induced conductor motion, IEEE Trans. Power Deliv. 12, 1029–1034 (1997) [Google Scholar]
- P.-O. Dallaire, Étude des vibrations éoliennes instationnaires, Thèse de master, Université de Sherbrooke, Canada, 2008 [Google Scholar]
- D. Nowell, D.A. Hills, Mechanics of fretting fatigue tests, Int. J. Mech. Sci. 29, 355–365 (1987) [Google Scholar]
- D.A. Hills, Mechanics of fretting fatigue, Wear 175, 107–113 (1994) [Google Scholar]
- Z.R. Zhou, A. Cardou, S. Goudreau, M. Fiset, Fretting patterns in a conductor-clamp contact zone, Fatigue Fract. Eng. Mater. Struct. 17, 661–669 (1994) [Google Scholar]
- B. Ouaki, S. Goudreau, A. Cardou, M. Fiset, Fretting fatigue analysis of aluminium conductor wires near the suspension clamp: metallurgical and fracture mechanics analysis, J. Strain Anal. Eng. Des. 38, 133–147 (2003) [Google Scholar]
- C.R.F. Azevedo, A.M.D. Henriques, A.R. Pulino Filho, J.L.A. Ferreira, J.A. Araújo, Fretting fatigue in overhead conductors: Rig design and failure analysis of a Grosbeak aluminium cable steel reinforced conductor, Eng. Fail. Anal. 16, 136–151 (2009) [Google Scholar]
- C.R.F. Azevedo, T. Cescon, Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana River, Eng. Fail. Anal. 9, 645–664 (2002) [Google Scholar]
- S. Fouvry, P. Kapsa, L. Vincent, An elastic-plastic shakedown analysis of fretting wear, Wear 247, 41–54 (2001) [Google Scholar]
- ABAQUS/Standard User’s Manual, Version 6.14, Simulia, 2014 [Google Scholar]
- K. Dang Van, M.H. Maitournam, Elasto-plastic calculations of the mechanical state in reciprocating moving contacts: Application to fretting fatigue, in: Fretting Fatigue, Mechanical Engineering Publications, London, 1994, pp. 161–168 [Google Scholar]
- P. Ladevèze, La méthode à grand incrément de temps pour l’analyse de structures à comportement non linéaire décrit par variables internes, Comptes-rendus l’Acad. Sci. Série II 309, 1095–1099 (1989) [Google Scholar]
- N. Maouche, Modélisation des phénomènes d’endommagements dus aux contacts à faible amplitude de débattement, Thèse de doctorat, École Nationale des Ponts et Chaussées, France, 1997 [Google Scholar]
- E. Pierres, Simulation tridimensionnelle multi-échelle de la propagation de fissures expérimentales sous chargement de fretting fatigue par la méthode des éléments finis étendus, Thèse de doctorat, INSA Lyon, France, 2010 [Google Scholar]
- K. Dang Van, B. Griveau, O. Message, On a new multiaxial fatigue limit criterion: Theory and application, in: Biaxial and Multiaxial Fatigue, Mechanical Engineering Publications, London, 1989, pp. 479–496 [Google Scholar]
- K. Dang Van, Macro-micro approach in high-cycle multiaxial fatigue, in: Advances in Multiaxial Fatigue, ASTM International, Philadelphie, 1993 [Google Scholar]
- C. Petiot, L. Vincent, K. Dang Van, N. Maouche, J. Foulquier, B. Journet, An analysis of fretting-fatigue failure combined with numerical calculations to predict crack nucleation, Wear 181, 101–111 (1995) [Google Scholar]
- F. Lévesque, S. Goudreau, L. Cloutier, A. Cardou, Finite element model of the contact between a vibrating conductor and a suspension clamp, Tribol. Int. 44, 1014–1023 (2011) [Google Scholar]
- F. Lévesque, S. Goudreau, A. Cardou, L. Cloutier, Strain measurements on ACSR conductors during during fatigue tests I – Experimental method and data, IEEE Trans. Power Deliv. 25, 2825–2834 (2010) [Google Scholar]
- S. Goudreau, F. Lévesque, A. Cardou, L. Cloutier, Strain measurements on ACSR conductors during fatigue tests II – Stress fatigue indicators, IEEE Trans. Power Deliv. 25, 2997–3006 (2010) [Google Scholar]
- S. Goudreau, F. Lévesque, A. Cardou, L. Cloutier, Strain measurements on ACSR conductors during fatigue tests III – Strains related to support geometry, IEEE Trans. Power Deliv. 25, 3007–3016 (2010) [Google Scholar]
- M.H. Maitournam, K. Dang Van, J.-F. Flavenot, Fatigue design of notched components with stress gradients and cyclic plasticity, Adv. Eng. Mater. 11, 750–754 (2009) [Google Scholar]
- B. Crossland, Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel, in: Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London, 1956, pp. 138–149 [Google Scholar]
- K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of metals, J. Mater. 5, 767–778 (1970) [Google Scholar]
- C. Ruiz, P.H.B. Boddington, K.C. Chen, An investigation of fatigue and fretting in a dovetail joint, Exp. Mech. 24, 208–217 (1984) [Google Scholar]
- J. Redford, M.C. Nguyen, H.-P. Lieurade, M. Gueguin, F. Hafid, C. Yang, J.-M. Ghidaglia, Prediction of crack initiation due to fretting-fatigue in overhead power lines, Article en préparation [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.