Numéro
Matériaux & Techniques
Volume 105, Numéro 5-6, 2017
Society and Materials (SAM11)
Numéro d'article 516
Nombre de pages 13
DOI https://doi.org/10.1051/mattech/2018016
Publié en ligne 11 juillet 2018
  1. T.F. Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Climate change 2013: the physical science basis, Intergovernmental Panel on Climate Change Thomas, Cambridge, 2013. [Google Scholar]
  2. C. Yao, K. Feng, K. Hubacek, Driving forces of CO2 emissions in the G20 countries: an index decomposition analysis from1971 to 2010, Ecol. Inform. 26, 93 (2015). doi:10.1016/j.ecoinf.2014.02.003. [CrossRef] [Google Scholar]
  3. EUROSTAT, Statistics on waste in Europe, Stat. Explain. (2015). http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics/fr (accessed April 3, 2016). [Google Scholar]
  4. American Association for the Advancement of Science Working with Waste: Infography of World of Waste, Science (80) 337, 664 (2012). doi:https://doi.org/10.1126/science.337.6095.664 [Google Scholar]
  5. R. Miehe, R. Schneider, F. Baaij, T. Bauernhansl, Criticality of material resources in industrial enterprises − structural basics of an operational model, 23rd CIRP Conf. Life Cycle Eng. 48, 1 (2016). doi:10.1016/j.procir.2016.03.035. [Google Scholar]
  6. H. Schandl, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod. 1 (2015). doi:10.1016/j.jclepro.2015.06.100. [Google Scholar]
  7. W. McDonough, M. Braungart, Cradle to cradle: remaking the way we make things, Edition al, Manifesto, Paris, 2012. [Google Scholar]
  8. G. Rebitzer, P. Fullana, B.P. Weidema, O. Jolliet, Recycling, close-loop economy, secondary resources, in: 10th LCA case study Symp., 2003, pp. 106–108. [Google Scholar]
  9. J. Butterworth, A. Morlet, H.P. Nguyen, J. Oppenheim, M. Stuchtey, Towards the circular economy: economic and business rationale for an accelerated transition, Ellen MacArthur Found. 1, 98 (2013). doi:10.1162/108819806775545321. [Google Scholar]
  10. A. Gahleitner, Closing the loop: next steps critical for Europe’s circular economy, Eur. Alum. Assoc. 2, 2 (2015). [Google Scholar]
  11. G. Lavery, N. Pennell, Le nouveau modèle industriel : plus de bénéfices, plus d’emplois et moins d’impact sur l’environnement, Interface, 2014. [Google Scholar]
  12. UNEP, Metal Stocks in society − Scientific synthesis, 2005. [Google Scholar]
  13. D. Panasiyk, B. Laratte, S. Remy, Steel stock analysis in Europe from1945 to 2013, Procedia CIRP. 48, 348 (2016). doi:10.1016/j.procir.2016.04.084. [CrossRef] [Google Scholar]
  14. B. Wallsten, D. Magnusson, S. Andersson, J. Krook, The economic conditions for urban infrastructure mining: using GIS to prospect hibernating copper stocks, Resour. Conserv. Recycl. 103, 85 (2015). doi:10.1016/j.resconrec.2015.07.025. [CrossRef] [Google Scholar]
  15. S. Spatari, M. Bertram, R.B. Gordon, K. Henderson, T.E. Graedel, Twentieth century copper stocks and flows in North America: a dynamic analysis, Ecol. Econ. 54, 37 (2005). doi:10.1016/j.ecolecon.2004.11.018. [CrossRef] [Google Scholar]
  16. C.E. Bruzek, A. Allais, D. Dickson, N. Lallouet, K. Allweins, E. Marzahn, Eco-friendly innovation in electricity transmission and distribution networks, Elsevier, 2015. doi:10.1016/B978-1-78242-010-1.00007-0. [Google Scholar]
  17. F. Goodwin, S. Guruswamy, K.U. Kainer, C. Kammer, W. Knabl, A. Koethe, G. Leichtfried, G. Schlamp, R. Stickler, H. Warlimont, Metals, in: W. Martienssen, H. Warlimont (Eds.), Handb. Condens. Matter Mater. Data Springer Berlin Heidelberg, Berlin, 2005, pp. 161–430. doi:10.1007/3-540-30437-1_5 [Google Scholar]
  18. UNEP, Recycling rates of metals, International, Paris, 2011. [Google Scholar]
  19. G. Rombach, B. Friedrich, Future potential and limits of aluminium recycling, in: W. Kuckshinrichs, P.N. Martens (Eds.), Resour. Anal. Met. Raw Mater., Matter and Materials, Jülich, 2003, p. 13. [Google Scholar]
  20. H. Ohno, K. Matsubae, K. Nakajima, Y. Kondo, S. Nakamura, T. Nagasaka, Toward the efficient recycling of alloying elements from end of life vehicle steel scrap, Resour. Conserv. Recycl. 100, 11 (2015). doi:10.1016/j.resconrec.2015.04.001. [CrossRef] [Google Scholar]
  21. D. Paraskevas, K. Kellens, W. Dewulf, J.R. Duflou, Sustainable metal management and recycling loops: life cycle assessment for aluminium recycling strategies, 20th CIRP Int. Conf. Life Cycle Eng. 404 (2013). doi:10.1007/978-981-4451-48-2_66. [Google Scholar]
  22. J.M. Allwood, Squaring the circular economy: the role of recycling within a hierarchy of material management strategies, in: Handb. Recycl., Elsevier Inc., Amsterdam, 2014, pp. 445–477. doi:10.1016/B978-0-12-396459-5.00030-1. [CrossRef] [Google Scholar]
  23. Union technique de l’électricité (UTE), UTE C30-202-Insulated cables and flexible cords − System for cable designation, Paris, France, 1990. [Google Scholar]
  24. European aluminium association (EAA), Aluminium for future generations: progressing through dialogue 52 (2003). [Google Scholar]
  25. European aluminium association (EAA), Global aluminium recycling: a cornerstone of sustainable development, International Aluminium Institute, London, 2006. [Google Scholar]
  26. International Standard Organization, ISO 14040 − Environmental management — Life Cycle Assessment — Principles and Framework, International, 2006. doi:10.1002/jtr. [Google Scholar]
  27. International Standard Organization, ISO 14044, Environmental management — Life cycle assessment — Requirements and guidelines, Geneva, 2006. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38498. [Google Scholar]
  28. R. Pommier, G. Grimaud, M. Prinçaud, N. Perry, G. Sonnemann, Comparative environmental life cycle assessment of materials in wooden boat ecodesign, Int. J. Life Cycle Assess. 21, 265 (2016). doi:10.1007/s11367-015-1009-1. [CrossRef] [Google Scholar]
  29. B.P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C.O. Vadenbo, G. Wernet, Overview and methodology. Data quality guideline for the ecoinvent database version 3, Ecoinvent, St. Gallen, Suisse, 2013. [Google Scholar]
  30. International aluminium institute (IAI), Aluminium mass flow Europe 2013, in: Reg. Mass Flow Model. − Part A, World Alum, London, 2014, p. 8. http://www.world-aluminium.org/publications/. [Google Scholar]
  31. European aluminium association (EAA), Environmental profile report for the European aluminium industry 2013, 78 (2013). [Google Scholar]
  32. M. Niero, S.I. Olsen, Circular economy: to be or not to be in a closed product loop? A Life cycle assessment of aluminium cans with inclusion of alloying elements, Resour. Conserv. Recycl. 114, 18 (2015). doi:10.1016/j.resconrec.2016.06.023. [CrossRef] [Google Scholar]
  33. B. Lacarrière, K.R. Deutz, N. Jamali-Zghal, O. Le Corre, Emergy assessment of the benefits of closed-loop recycling accounting for material losses, Ecol. Modell. 315, 77 (2015). doi:10.1016/j.ecolmodel.2015.01.015. [CrossRef] [Google Scholar]
  34. G. Grimaud, N. Perry, B. Laratte, Life cycle assessment of aluminium recycling process: case of shredder cables, in: Procedia CIRP, Berlin, 2016. doi:10.1016/j.procir.2016.03.097. [Google Scholar]
  35. R. Pommier, G. Grimaud, M. Prinçaud, N. Perry, G. Sonnemann, LCA (Life Cycle Assessment) of EVP − engineering veneer product: plywood glued using a vacuum moulding technology from green veneers, J. Clean. Prod. 124, 383 (2016). doi:10.1016/j.jclepro.2016.02.130. [CrossRef] [Google Scholar]
  36. G. Grimaud, M. Vuaillat, D. Ravet, B. Laratte, N. Perry, Life cycle assessment of aluminium recycling: case of electric cables, in: Soc. Mater. Int. Conf. (SAM 11) 2, SOVAMAT, Trondheim, Norway, 2017, p. 1. [Google Scholar]
  37. O. Jolliet, M. Saadé, P. Crettaz, S. Shaked, Analyse du cycle de vie : comprendre et réaliser un écobilan, PPUR Presses polytechniques, 2010. http://books.google.com/books?id=g9S55CklsOoC&pgis=1 (accessed June 26, 2013). [Google Scholar]
  38. L. Grisel, P. Osset, L’analyse du cycle de vie d’un produit ou d’un service : applications et mises en pratique, Afnor éditions, 2008. http://books.google.com/books?id=SuyQOwAACAAJ&pgis=1 (accessed June 26, 2013). [Google Scholar]
  39. JRC – Institute for environment and sustainability, The International reference life cycle data system (ILCD) Handbook, in: Int. Ref. Life Cycle Data Syst. Handb. – First Ed., European C, European Commission, Brussels, 2012, p. 72. doi:10.2788/85727. [Google Scholar]
  40. IPCC, Climate Change 2007 Synthesis Report, 2007. doi:10.1256/004316502320517344. [Google Scholar]
  41. Office of Acquisition and Project Management, Life cycle cost handbook guidance for life cycle cost estimation and analysis, 89 (2014). http://energy.gov/sites/prod/files/2014/10/f18/LCC. Handbook Final Version 9- 30-14. pdf. [Google Scholar]
  42. G. Grimaud, N. Perry, B. Laratte, Reducing environmental impacts of aluminium recycling process using life cycle assessment, 12th Bienn. Int. Conf. EcoBalance. 7 (2016). doi:10.1016/j.procir.2016.03.097. [Google Scholar]
  43. P. Peças, U. Götze, E. Henriques, I. Ribeiro, A. Schmidt, C. Symmank, Life Cycle Engineering − Taxonomy and State-of-the-art, 23rd CIRP Conf. Life Cycle Eng. 48, 73 (2016). doi:10.1016/j.procir.2016.04.085. [Google Scholar]
  44. M.Z. Hauschild, Better – But is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability, 22nd CIRP Conf. Life Cycle Eng. 29, 1 (2015). doi:10.1016/j.procir.2015.02.126. [Google Scholar]
  45. C. Herrmann, S. Blume, D. Kurle, C. Schmidt, S. Thiede, The positive impact factory–transition from eco-efficiency to eco–effectiveness strategies in manufacturing, 22nd CIRP Conf. Life Cycle Eng. 29, 19 (2015). doi:10.1016/j.procir.2015.02.066. [Google Scholar]
  46. G. Grimaud, N. Perry, B. Laratte, Évaluation de la performance technique des scénarios de recyclage durant la conception, in: Colloq. Natl. AIP Primeca 2017, CNRS, La Plagne, 2017, pp. 1–7. https://aip-primeca2017.sciencesconf.org/137747/document. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.