Matériaux & Techniques
Volume 105, Number 5-6, 2017
Society and Materials (SAM11)
Article Number 516
Number of page(s) 13
Published online 11 July 2018
  1. T.F. Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Climate change 2013: the physical science basis, Intergovernmental Panel on Climate Change Thomas, Cambridge, 2013. [Google Scholar]
  2. C. Yao, K. Feng, K. Hubacek, Driving forces of CO2 emissions in the G20 countries: an index decomposition analysis from1971 to 2010, Ecol. Inform. 26, 93 (2015). doi:10.1016/j.ecoinf.2014.02.003. [CrossRef] [Google Scholar]
  3. EUROSTAT, Statistics on waste in Europe, Stat. Explain. (2015). (accessed April 3, 2016). [Google Scholar]
  4. American Association for the Advancement of Science Working with Waste: Infography of World of Waste, Science (80) 337, 664 (2012). doi: [Google Scholar]
  5. R. Miehe, R. Schneider, F. Baaij, T. Bauernhansl, Criticality of material resources in industrial enterprises − structural basics of an operational model, 23rd CIRP Conf. Life Cycle Eng. 48, 1 (2016). doi:10.1016/j.procir.2016.03.035. [Google Scholar]
  6. H. Schandl, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod. 1 (2015). doi:10.1016/j.jclepro.2015.06.100. [Google Scholar]
  7. W. McDonough, M. Braungart, Cradle to cradle: remaking the way we make things, Edition al, Manifesto, Paris, 2012. [Google Scholar]
  8. G. Rebitzer, P. Fullana, B.P. Weidema, O. Jolliet, Recycling, close-loop economy, secondary resources, in: 10th LCA case study Symp., 2003, pp. 106–108. [Google Scholar]
  9. J. Butterworth, A. Morlet, H.P. Nguyen, J. Oppenheim, M. Stuchtey, Towards the circular economy: economic and business rationale for an accelerated transition, Ellen MacArthur Found. 1, 98 (2013). doi:10.1162/108819806775545321. [Google Scholar]
  10. A. Gahleitner, Closing the loop: next steps critical for Europe’s circular economy, Eur. Alum. Assoc. 2, 2 (2015). [Google Scholar]
  11. G. Lavery, N. Pennell, Le nouveau modèle industriel : plus de bénéfices, plus d’emplois et moins d’impact sur l’environnement, Interface, 2014. [Google Scholar]
  12. UNEP, Metal Stocks in society − Scientific synthesis, 2005. [Google Scholar]
  13. D. Panasiyk, B. Laratte, S. Remy, Steel stock analysis in Europe from1945 to 2013, Procedia CIRP. 48, 348 (2016). doi:10.1016/j.procir.2016.04.084. [CrossRef] [Google Scholar]
  14. B. Wallsten, D. Magnusson, S. Andersson, J. Krook, The economic conditions for urban infrastructure mining: using GIS to prospect hibernating copper stocks, Resour. Conserv. Recycl. 103, 85 (2015). doi:10.1016/j.resconrec.2015.07.025. [CrossRef] [Google Scholar]
  15. S. Spatari, M. Bertram, R.B. Gordon, K. Henderson, T.E. Graedel, Twentieth century copper stocks and flows in North America: a dynamic analysis, Ecol. Econ. 54, 37 (2005). doi:10.1016/j.ecolecon.2004.11.018. [CrossRef] [Google Scholar]
  16. C.E. Bruzek, A. Allais, D. Dickson, N. Lallouet, K. Allweins, E. Marzahn, Eco-friendly innovation in electricity transmission and distribution networks, Elsevier, 2015. doi:10.1016/B978-1-78242-010-1.00007-0. [Google Scholar]
  17. F. Goodwin, S. Guruswamy, K.U. Kainer, C. Kammer, W. Knabl, A. Koethe, G. Leichtfried, G. Schlamp, R. Stickler, H. Warlimont, Metals, in: W. Martienssen, H. Warlimont (Eds.), Handb. Condens. Matter Mater. Data Springer Berlin Heidelberg, Berlin, 2005, pp. 161–430. doi:10.1007/3-540-30437-1_5 [Google Scholar]
  18. UNEP, Recycling rates of metals, International, Paris, 2011. [Google Scholar]
  19. G. Rombach, B. Friedrich, Future potential and limits of aluminium recycling, in: W. Kuckshinrichs, P.N. Martens (Eds.), Resour. Anal. Met. Raw Mater., Matter and Materials, Jülich, 2003, p. 13. [Google Scholar]
  20. H. Ohno, K. Matsubae, K. Nakajima, Y. Kondo, S. Nakamura, T. Nagasaka, Toward the efficient recycling of alloying elements from end of life vehicle steel scrap, Resour. Conserv. Recycl. 100, 11 (2015). doi:10.1016/j.resconrec.2015.04.001. [CrossRef] [Google Scholar]
  21. D. Paraskevas, K. Kellens, W. Dewulf, J.R. Duflou, Sustainable metal management and recycling loops: life cycle assessment for aluminium recycling strategies, 20th CIRP Int. Conf. Life Cycle Eng. 404 (2013). doi:10.1007/978-981-4451-48-2_66. [Google Scholar]
  22. J.M. Allwood, Squaring the circular economy: the role of recycling within a hierarchy of material management strategies, in: Handb. Recycl., Elsevier Inc., Amsterdam, 2014, pp. 445–477. doi:10.1016/B978-0-12-396459-5.00030-1. [CrossRef] [Google Scholar]
  23. Union technique de l’électricité (UTE), UTE C30-202-Insulated cables and flexible cords − System for cable designation, Paris, France, 1990. [Google Scholar]
  24. European aluminium association (EAA), Aluminium for future generations: progressing through dialogue 52 (2003). [Google Scholar]
  25. European aluminium association (EAA), Global aluminium recycling: a cornerstone of sustainable development, International Aluminium Institute, London, 2006. [Google Scholar]
  26. International Standard Organization, ISO 14040 − Environmental management — Life Cycle Assessment — Principles and Framework, International, 2006. doi:10.1002/jtr. [Google Scholar]
  27. International Standard Organization, ISO 14044, Environmental management — Life cycle assessment — Requirements and guidelines, Geneva, 2006. [Google Scholar]
  28. R. Pommier, G. Grimaud, M. Prinçaud, N. Perry, G. Sonnemann, Comparative environmental life cycle assessment of materials in wooden boat ecodesign, Int. J. Life Cycle Assess. 21, 265 (2016). doi:10.1007/s11367-015-1009-1. [CrossRef] [Google Scholar]
  29. B.P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C.O. Vadenbo, G. Wernet, Overview and methodology. Data quality guideline for the ecoinvent database version 3, Ecoinvent, St. Gallen, Suisse, 2013. [Google Scholar]
  30. International aluminium institute (IAI), Aluminium mass flow Europe 2013, in: Reg. Mass Flow Model. − Part A, World Alum, London, 2014, p. 8. [Google Scholar]
  31. European aluminium association (EAA), Environmental profile report for the European aluminium industry 2013, 78 (2013). [Google Scholar]
  32. M. Niero, S.I. Olsen, Circular economy: to be or not to be in a closed product loop? A Life cycle assessment of aluminium cans with inclusion of alloying elements, Resour. Conserv. Recycl. 114, 18 (2015). doi:10.1016/j.resconrec.2016.06.023. [CrossRef] [Google Scholar]
  33. B. Lacarrière, K.R. Deutz, N. Jamali-Zghal, O. Le Corre, Emergy assessment of the benefits of closed-loop recycling accounting for material losses, Ecol. Modell. 315, 77 (2015). doi:10.1016/j.ecolmodel.2015.01.015. [CrossRef] [Google Scholar]
  34. G. Grimaud, N. Perry, B. Laratte, Life cycle assessment of aluminium recycling process: case of shredder cables, in: Procedia CIRP, Berlin, 2016. doi:10.1016/j.procir.2016.03.097. [Google Scholar]
  35. R. Pommier, G. Grimaud, M. Prinçaud, N. Perry, G. Sonnemann, LCA (Life Cycle Assessment) of EVP − engineering veneer product: plywood glued using a vacuum moulding technology from green veneers, J. Clean. Prod. 124, 383 (2016). doi:10.1016/j.jclepro.2016.02.130. [CrossRef] [Google Scholar]
  36. G. Grimaud, M. Vuaillat, D. Ravet, B. Laratte, N. Perry, Life cycle assessment of aluminium recycling: case of electric cables, in: Soc. Mater. Int. Conf. (SAM 11) 2, SOVAMAT, Trondheim, Norway, 2017, p. 1. [Google Scholar]
  37. O. Jolliet, M. Saadé, P. Crettaz, S. Shaked, Analyse du cycle de vie : comprendre et réaliser un écobilan, PPUR Presses polytechniques, 2010. (accessed June 26, 2013). [Google Scholar]
  38. L. Grisel, P. Osset, L’analyse du cycle de vie d’un produit ou d’un service : applications et mises en pratique, Afnor éditions, 2008. (accessed June 26, 2013). [Google Scholar]
  39. JRC – Institute for environment and sustainability, The International reference life cycle data system (ILCD) Handbook, in: Int. Ref. Life Cycle Data Syst. Handb. – First Ed., European C, European Commission, Brussels, 2012, p. 72. doi:10.2788/85727. [Google Scholar]
  40. IPCC, Climate Change 2007 Synthesis Report, 2007. doi:10.1256/004316502320517344. [Google Scholar]
  41. Office of Acquisition and Project Management, Life cycle cost handbook guidance for life cycle cost estimation and analysis, 89 (2014). Handbook Final Version 9- 30-14. pdf. [Google Scholar]
  42. G. Grimaud, N. Perry, B. Laratte, Reducing environmental impacts of aluminium recycling process using life cycle assessment, 12th Bienn. Int. Conf. EcoBalance. 7 (2016). doi:10.1016/j.procir.2016.03.097. [Google Scholar]
  43. P. Peças, U. Götze, E. Henriques, I. Ribeiro, A. Schmidt, C. Symmank, Life Cycle Engineering − Taxonomy and State-of-the-art, 23rd CIRP Conf. Life Cycle Eng. 48, 73 (2016). doi:10.1016/j.procir.2016.04.085. [Google Scholar]
  44. M.Z. Hauschild, Better – But is it good enough? On the need to consider both eco-efficiency and eco-effectiveness to gauge industrial sustainability, 22nd CIRP Conf. Life Cycle Eng. 29, 1 (2015). doi:10.1016/j.procir.2015.02.126. [Google Scholar]
  45. C. Herrmann, S. Blume, D. Kurle, C. Schmidt, S. Thiede, The positive impact factory–transition from eco-efficiency to eco–effectiveness strategies in manufacturing, 22nd CIRP Conf. Life Cycle Eng. 29, 19 (2015). doi:10.1016/j.procir.2015.02.066. [Google Scholar]
  46. G. Grimaud, N. Perry, B. Laratte, Évaluation de la performance technique des scénarios de recyclage durant la conception, in: Colloq. Natl. AIP Primeca 2017, CNRS, La Plagne, 2017, pp. 1–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.